Когда Даудна вернулась в Беркли, они с Йинеком начали через
“Работа велась круглосуточно, – вспоминает Йинек. – Я проводил эксперимент в конце дня, отправлял письмо в Вену, а там Кшиштоф читал его, как только просыпался утром”. Затем они созванивались в
Сначала Шарпантье и Даудна участвовали в звонках лишь раз или два в месяц. В июле 2011 года ситуация изменилась, когда Шарпантье и Хылинский прилетели в Беркли на ежегодную конференцию по CRISPR, которая быстро набирала обороты. Хотя они тесно общались в
При личных встречах рождаются такие идеи, которые не приходят на телефонных конференциях и за разговорами в зуме. Так случилось в Пуэрто-Рико, а потом и еще раз, когда четверо исследователей впервые встретились в Беркли. Именно там они разработали стратегию, чтобы выяснить, какие молекулы необходимы системе CRISPR для разрезания ДНК. Личные встречи особенно полезны на ранних этапах проекта. “Ничто не сравнится с возможностью сидеть рядом с людьми, видеть их реакцию и обмениваться идеями лицом к лицу, – говорит Даудна. – Это краеугольный камень всех наших совместных проектов, включая и те, где огромный объем работы производится по электронной связи”.
Сначала у Йинека и Хылинского не получалось заставить CRISPR-Cas9 разрезать ДНК вируса в пробирке. Они пытались задействовать лишь два компонента: фермент
Именно здесь в наш рассказ возвращается tracгРНК. В статье 2011 года Шарпантье показала, что tracгРНК необходима для создания направляющей cгРНК. Позже она высказала подозрения, что tracгРНК играет еще большую, постоянную роль, но серия их изначальных экспериментов не предполагала проверку этой вероятности. Когда эти эксперименты провалились, Хылинский решил добавить в пробирку tracгРНК.
План сработал: трехкомпонентный состав стабильно разрезал ДНК-мишень. Йинек сразу поделился новостью с Даудной: “Без tracгРНК направляющая cгРНК не связывается с ферментом
Ночь за ночью Хылинский и Йинек обменивались результатами, понемногу продвигаясь к разгадке, а Шарпантье и Даудна все чаще обсуждали стратегию. Они сумели выяснить точный механизм действия каждого из трех важнейших компонентов комплекса CRISPR-Cas9. cгРНК содержала 20-буквенную последовательность, которая выступала в качестве набора координат для направления комплекса к фрагменту ДНК с подобной последовательностью. tracгРНК, которая участвовала в создании этой cгРНК, теперь играла дополнительную роль, формируя структуру, удерживающую другие компоненты на нужных местах при привязке к ДНК-мишени. Фермент
Однажды, сразу после того, как ключевой эксперимент дал положительный результат, Даудна у себя дома готовила спагетти. Наблюдая, как они закручиваются в кипящей воде, она вспомнила, как в школе, изучая ДНК, рассматривала под микроскопом сперму лосося, и рассмеялась. Ее сын Энди, которому тогда было девять лет, спросил, что ее рассмешило. “Мы нашли один белок, фермент
Эта удивительная маленькая система, как скоро стало ясно, имела поистине судьбоносный потенциал: направляющую cгРНК можно было модифицировать, делая мишенью любую ДНК-последовательность по собственному выбору. Она поддавалась программированию. Она могла стать инструментом для редактирования генома.
Исследование CRISPR стало ярким примером переклички фундаментальной науки и трансляционной медицины. Сначала оно было движимо чистым любопытством охотников за микробами, стремившихся объяснить одну странность, с которой они столкнулись при секвенировании ДНК неординарных бактерий. Затем CRISPR изучали в попытке защитить бактерии йогуртовых культур от атакующих их вирусов. Это привело к фундаментальному открытию о рабочих механизмах биологии. Теперь биохимический анализ показывал путь к изобретению инструмента с практическим потенциалом. “Выявив компоненты системы CRISPR-Cas9, мы поняли, что можем программировать ее на свой лад, – говорит Даудна. – Иными словами, мы могли добавить другую cгРНК, чтобы в результате разрезать любую другую последовательность ДНК по нашему выбору”.
История науки знает не так уж много истинных озарений, но это было одно из них. “Нельзя сказать, что осознание пришло к нам постепенно, – вспоминает Даудна. – Все случилось внезапно”. Когда Йинек показал Даудне свои данные, демонстрирующие, что
На следующем этапе предстояло выяснить, можно ли еще больше упростить систему CRISPR. Если да, то она могла бы стать не просто очередным инструментом для редактирования генома, а инструментом, который легче поддавался бы программированию и был бы дешевле существующих методов.
Однажды Йинек пришел из лаборатории в кабинет Даудны. Он проводил эксперименты, чтобы определить минимальные требования к cгРНК, служившей проводником, и tracгРНК, которая привязывала ее к ДНК-мишени. Ученые стояли у белой доски перед столом Даудны, и Йинек рисовал схему строения двух малых РНК. Какие элементы cгРНК и tracгРНК играют ключевую роль при разрезании ДНК в пробирке? “Казалось, что система предполагает некоторую гибкость и длина фрагментов РНК может варьироваться”, – говорит Йинек. Каждую из малых РНК можно было сделать еще немного короче, но оставить при этом рабочей. Даудна прекрасно понимала структуру РНК и, как ребенок, радовалась возможности разобраться в механизмах ее работы. В процессе обсуждения ученым стало понятно, что они могут связать вместе две РНК, присоединив хвост одной из них к голове другой таким образом, чтобы итоговая молекула не потеряла функциональности.
Они хотели создать единую молекулу РНК, которая содержала бы и направляющую информацию с одной стороны, и идентификатор привязки с другой. В итоге получилась так называемая одиночная направляющая РНК (sдРНК). Сделав паузу, ученые переглянулись, а затем Даудна сказала: “Ничего себе”. “Такие моменты в науке приходят сами собой, – вспоминает она. – У меня по спине пробежал холодок и волоски на шее встали дыбом. В тот момент мы поняли, что у проекта, за который мы взялись из чистого любопытства, есть важное следствие, способное все в корне изменить”. И правда, можно представить, как поведение крошечной молекулы заставило волоски на шее у Даудны встать дыбом.
Даудна сказала Йинеку немедленно приступать к работе по соединению двух молекул РНК и созданию одиночной направляющей РНК для
Сразу стало очевидно, что одиночная направляющая РНК сделает CRISPR-Cas9 еще более универсальным, легким в использовании и программируемым инструментом для редактирования генов. Система с единой направляющей имела особенное значение – как с научной точки зрения, так и с позиции интеллектуальной собственности, – поскольку была изобретением человека, а не просто обнаруженным в природе феноменом.
К тому моменту сотрудничество Даудны с Шарпантье принесло два важных прорыва. Первым стало открытие, что tracгРНК играет ключевую роль не только в создании направляющей РНК, но и, что важнее, в удержании их вместе с ферментом
В день, когда они с Йинеком придумали, как создать одиночную направляющую РНК, Даудна за ужином объяснила идею своему мужу. Поняв, что это может пригодиться для будущего патента на технологию редактирования генома, он посоветовал ей записать все в лабораторный журнал и засвидетельствовать. Тем же вечером Йинек вернулся в лабораторию и сделал подробное описание концепции. Было около девяти часов, но Сэм Стернберг и Рейчел Хорвиц еще не ушли. В нижней части на каждой странице лабораторных журналов отводится место для подписей свидетелей, необходимых при совершении важных открытий, и Йинек попросил Стернберга и Хорвиц расписаться. Поскольку к Стернбергу раньше не обращались с такой просьбой, он сразу понял, что этот вечер войдет в историю[141].
Глава 18. Science, 2012