Над этим вопросом человечество билось на протяжении тысячелетий. Древние греки полагали, что Вселенная ограничена небесной сферой (твердью), на внутренней поверхности которой нарисованы звезды. Эта сфера вращалась, совершая оборот за 24 часа, что объясняло движение звезд. Но эту модель нельзя признать удовлетворительной: если мы отправимся в космическое путешествие, то что же – в конечном счете налетим на стенку? А если так, то что находится по ту сторону стенки?
Исаак Ньютон одним из первых предположил, что у нашей Вселенной, возможно, нет границы – что она бесконечна. Сколь ни привлекательна идея бесконечной Вселенной, она не соотносится с современной теорией возникновения Вселенной при Большом взрыве и ее последующего расширения из концентрированного сгустка материи и энергии. Мы теперь считаем, что в пространстве находится лишь ограниченное количество материи. Но как Вселенная может быть конечна и при этом не иметь границы?
Эта проблема аналогична той, что стояла перед нашими исследователями мира, у которого конечная площадь поверхности, но нет ни краев, ни границ. Правда, вместо того чтобы быть прижатыми к двумерной поверхности, мы находимся внутри трехмерной Вселенной. Существует ли элегантный способ найти форму этой Вселенной и разрешить очевидный парадокс того, что у нее нет границ и при этом она конечна?
Потребовалось открытие четырехмерной геометрии форм в середине XIX в. для того, чтобы у нас появился возможный ответ. Математики поняли, что четвертое измерение дает им достаточно пространства, чтобы сложить нашу трехмерную Вселенную в формы, у которых конечный объем и при этом нет границ. Так же происходит с конечной по площади двумерной поверхностью Земли или поверхностью бублика, у которых нет краев.
Мы уже видели, как конечная двумерная вселенная в игре «Астероиды» в действительности является поверхностью трехмерного бублика. Но мы же трехмерные путешественники, которые могут перемещаться и в третьем измерении. Возможно, Вселенная, в которой мы живем, подобна вселенной из игры «Астероиды»? Начнем с того, что сделаем стоп-кадр Вселенной после Большого взрыва в тот момент, когда она расширилась до размера вашей спальни. Эта Вселенная размером со спальную комнату конечна по объему, но у нее нет границ – потому что различные части спальни соединены между собой довольно любопытным образом.
Представьте, что вы стоите в середине комнаты лицом к стене (я предполагаю, что у вашей спальни форма куба). Когда вы идете вперед, то не ударяетесь в стену перед вами, а проходите через стену, бывшую за вами. Сходным образом когда вы проходите через стену за вами, то появляетесь из стены впереди. Если вы поменяете направление на 90° и направитесь к стене слева, то, пройдя через нее, вы выйдете из стены справа (и наоборот). Итак, части вашей спальни соединены как в игре «Астероиды».
Но мы – трехмерные путешественники в пространстве, которые могут отправиться и в третьем направлении. Когда мы подлетаем к потолку, то не отскакиваем от него, а проходим сквозь него и выходим из пола. При путешествии в противоположном направлении мы проходим через пол и выходим из потолка.
При этом форма Вселенной соответствует поверхности четырехмерного бублика, или гипербублика. Но подобно тому, как космонавт, запертый в игре «Астероиды», не может выйти из своего двумерного мира, чтобы разглядеть, как свернута вселенная, мы не в состоянии увидеть этот гипербублик. И все же, используя язык математики, мы можем испытать его форму и исследовать его геометрию. К настоящему времени наша Вселенная заметно расширилась за пределы спальной комнаты, но, возможно, она по-прежнему устроена как поверхность гипербублика. Подумайте о свете, который распространяется по прямой линии от Солнца. Быть может, он не исчезает на бесконечности, а, образуя петлю, возвращается назад и попадает на Землю. Если это так, одна из наблюдаемых нами далеких звезд – это наше Солнце, потому что его свет распространялся по всему гипербублику и наконец пришел на Землю. Следовательно, мы можем видеть наше Солнце, когда оно было значительно моложе.
Это кажется невероятным, но представьте, что вы сидите в своей спальне, которая соответствует мини-бублику Вселенной, и зажигаете спичку. Когда вы глядите на стену перед собой, то видите пламя спички перед вами. Теперь обернитесь и посмотрите на противоположную стену. Вы снова увидите спичку, но теперь на несколько большем расстоянии, потому что свет от спички сначала идет к стене перед вами, а затем проходит через противоположную стену и попадает вам в глаз.
Возможно, мы живем не на гипербублике, а на поверхности четырехмерного футбольного мяча. Некоторые астрономы полагают, что мы могли бы жить в форме, которая напоминает додекаэдр с 12 гранями, где как в мини-вселенной размером со спальню, когда вы достигаете одной из граней додекаэдра, то возвращаетесь в вашу вселенную через противоположную грань. Вероятно, мы совершили полный круг и вернулись к той модели, которую Платон предложил две тысячи лет назад. Согласно ей наша Вселенная заключена внутрь стеклянного додекаэдра, к поверхности которого прикреплены звезды. Возможно, современная математика наполнила смыслом эту модель, ведь противоположные грани этой формы теперь соединены и более не представляют стеклянных перегородок вселенной.
Но какие другие формы могли бы быть у нашей Вселенной? Вспомните, как Пуанкаре провел классификацию всех возможных форм, которые могли бы быть у двумерных поверхностей, таких как поверхность нашей планеты. Поверхность может быть свернута как футбольный мяч, бублик, брецель с двумя дырками, с тремя дырками или с большим количеством дырок. Пуанкаре доказал, что какие бы другие формы вы ни постарались изготовить, их можно деформировать в сферу или брецель с дырками.
А что же можно сказать о нашей трехмерной Вселенной – какая форма может быть у нее? Эта задача на миллион долларов называется гипотезой Пуанкаре. Она особенна, потому что в 2002 г. появились новости о ее решении российским математиком Григорием Перельманом. Его доказательство гипотезы Пуанкаре было проверено многими математиками, и теперь признано, что он действительно расклассифицировал все возможные формы, которые могла бы принимать наша Вселенная. Это была первая решенная задача на миллион долларов, но, когда в июне 2010 г. Перельману предложили получить премию, он, к общему изумлению, отказался от нее. Для Перельмана приз был не в деньгах, но в найденном решении одной из величайших задач в истории математики. До того Перельман уже отказался от медали Филдса, математического эквивалента Нобелевской премии. В наш век погони за славой и материальным достатком такой поступок человека, которого вдохновляет доказательство теорем, а не получение призов, представляется невероятно благородным.
После того как математики признали доказательство Перельмана, можно утверждать, что они разобрались во всех возможных формах. Теперь дело за астрономами, наблюдающими за ночным небом: определить, какая из них лучше всего описывает неуловимую форму Вселенной.
Решения
Разрез пересекает все шесть граней, и каждая грань добавляет ребро к образовавшейся новой грани. Эта форма должна быть симметрична, так что у вас получится шестиугольник.
Вот так можно расцепить два кольца, непрерывно деформируя их в тор с двумя дырками.
Глава 3