Одна из причин этих различий кроется в том, как разойдутся пары хромосом. Сперматозоид может содержать хромосому 1, полученную от отца, хромосому 2, полученную от матери, и т. д. В другом сперматозоиде будет иная комбинация. Кроме того, некоторые сперматозоиды окажутся гибридными. Хромосома 1, например, из-за мейоза может иметь одни участки, полученные от отца, а другие – от матери.
Основные биологические принципы мейоза у женщин точно такие же, но сроки очень отличаются[353]. Первый этап начинается, когда девочка еще находится в утробе матери. Группа клеток внутри эмбриона получает новое назначение – эти клетки становятся предшественницами яйцеклеток. Они мигрируют туда, где позже сформируются яичники. На седьмом месяце развития плода в этих клетках-предшественницах начинается мейоз: хромосомы удваиваются, сцепляются парами и обмениваются участками ДНК. Но затем хромосомы как бы застывают, останавливая мейоз на полпути. Они остаются в таком состоянии годами, пока девочка не достигнет периода полового созревания и у нее не начнутся овуляции.
В течение каждого овуляторного цикла одна яйцеклетка запускает продолжение мейоза и завершает свое деление[354]. Так же как и у мужчин, в результате мейоза у женщин образуются четыре новые клетки, каждая из которых содержит 23 хромосомы. Но только одна из них станет зрелой яйцеклеткой. Остальные три редуцируются до маленьких полярных телец[355].
Сейчас ученые понимают, как мейоз обеспечил закономерности, которые Мендель наблюдал у себя в саду. Когда Мендель скрещивал, например, высокие и низкие растения, полученные гибриды оказывались высокими[356]. Но когда он скрестил гибриды между собой, то увидел, что четверть потомков – низкорослые. Недавно ученые выяснили, какой ген отвечает за эти различия. Ген
Когда гибридные особи вырастали, перед образованием пыльцевого зерна и семязачатка некоторые их клетки делились мейозом. Хромосомы в этих клетках удваивались, менялись фрагментами между соответствующими участками и разделялись на четыре набора. С каким вариантом гена
Биолог Лоренс Херст как-то написал, что процесс мейоза «напоминает пьяную походку возвращающегося с вечеринки человека: шаг назад, два шага вперед»[357]. Однако этот странный процесс лежит в основе одной из самых изящных закономерностей в наследственности.
Впервые ученые увидели хромосомы в середине XIX в., но мейоз оставался неизвестным еще несколько десятилетий. В начале 1900-х гг. бельгийский священник Франс Альфонс Янсенс окрашивал яйцеклетки саламандр таким способом, что можно было наблюдать их хромосомы в микроскоп[358]. Процесс окраски заставал клетки на разных стадиях мейоза, подобно стоп-кадру в фильме. Это выглядело так, как если бы хромосомы взаимодействовали друг с другом, а потом разошлись.
В кратком отчете о своем открытии, опубликованном в 1909 г., Янсенс не пытался делать глубоких выводов о наследственности. Но он чувствовал, что увиденное может оказаться важным. Исследователь вопрошал: «Не слишком ли мы самонадеянны? Время покажет»[359].
Долго ждать не пришлось. Пока Янсенс наблюдал за клетками саламандры в Бельгии, в Нью-Йорке Томас Морган, как уже говорилось, скрещивал белоглазых мух. Американский исследователь со своими коллегами первым открыл, что наследственные факторы, отвечающие за белый или красный цвет глаз, находятся в хромосоме. (Сегодня мы бы сказали, что ген цвета глаз – это фрагмент ДНК в хромосоме.) Кроме того, группа Моргана обнаружила, что на той же хромосоме расположен еще один наследственный фактор, вызывающий у мух укорочение крыльев.
Это была X-хромосома, и Морган с коллегами смогли изучать данные факторы с помощью скрещивания мух. Они воспользовались той особенностью полов, что у самцов только одна X-хромосома, а у самок – две. Скрещивая мух, Морган и его студенты получили самок одновременно с белыми глазами и короткими крыльями. При этом фактор белых глаз был на одной X-хромосоме, а коротких крыльев – на другой. Затем полученных мух скрестили с самцами – обладателями красных глаз и нормальных крыльев.
У сыновей этих самок была только одна X-хромосома, которую они унаследовали от матерей. Ученых не удивило, что у некоторых сыновей были белые глаза и нормальные крылья, а у других – красные глаза и короткие крылья. Кроме этого Морган и его ученики увидели нечто необычное: несколько сыновей было с белыми глазами
В более поздних исследованиях группа Моргана показала, что можно разделить два фактора, находящихся на одной хромосоме. Исследователи вывели мух, у которых на одной и той же X-хромосоме находились факторы, отвечающие за короткие крылья и желтое тело. У сыновей, получивших данную хромосому, должны были проявиться обе эти черты. Однако, когда Морган скрестил этих мух между собой, некоторые сыновья получили желтое тело и нормальные крылья. А у некоторых было обычное тело с короткими крыльями.
Морган не сразу разобрался в полученных результатах. К счастью, он случайно наткнулся на отчет Янсенса и увидел, что Янсенс, сам того не ожидая, нашел физическое объяснение его результатам. Морган с коллегами быстро создали новую гипотезу, объединяющую обе группы результатов. Они уверенно предположили, что на каждой хромосоме присутствует набор факторов, расположенных линейно, как бусины на нити. В процессе образования яйцеклеток у самок их X-хромосомы перекрещиваются и обмениваются участками друг с другом[360].
Соединение и расщепление признаков происходило довольно редко. Однако Морган и его студенты заметили, что это случалось с поразительной регулярностью. Какой-то определенный признак всегда образует новую комбинацию с другим у 1 % всех потомков, а новую комбинацию с третьим – у 2 %. Ученик Моргана Алфред Стёртевант понял, что причина такой загадочной закономерности кроется в расположении этих генов на хромосоме.
Когда во время мейоза хромосома разрезается на фрагменты, гены, находящиеся рядом, скорее всего окажутся в одном сегменте. А те, что далеко отстоят друг от друга, с большей вероятностью попадут в разные. Это происходит подобно тому, как если бы кто-то решил разодрать словарь – слово «мейоз» скорее оказалось бы в том же фрагменте, что и «митоз», а не в том, где объясняется «хромосома». Догадка Стёртеванта привела его к построению генетических карт, которые показывали, насколько далеко расположены гены относительно друг друга на хромосоме. Теперь наследственность обрела свою географию.
Принципы наследственности, открытые группой Моргана на мухах, вновь и вновь оказывались верными и для других видов. Мейоз не был исключением. Мы, люди, наряду с другими животными тоже оказались его продуктами. Колышущиеся приливами скользкие водоросли, шелестящие на ветру заросли бамбука, вздымающиеся из-под земли грибы-веселки – у них у всех происходит мейоз. Хотя ученые пока не пришли к единому мнению о том, зачем он возник, уже есть множество доказательств, что он позволяет эволюции работать лучше[361].
Смотрите, что делает мейоз у одной из моргановских мух-дрозофил. Как и у других мух, у нее есть определенный набор признаков, скажем, короткие крылья, сильная иммунная система и способность откладывать множество яиц. Предположим, что гены, отвечающие за эти признаки (один плохой и два хороших), находятся на одной хромосоме. Без мейоза муха передавала бы эти три гена в одной связке, так как они лежат на одной хромосоме. Более того, если на этой хромосоме возникнет новая вредная мутация, то и она будет передаваться потомкам вместе с остальными генами. Через поколения потомство этой мухи будет страдать от бремени вредных мутаций.
Дайте мухе мейоз – и все изменится. Ее потомки более не обречены наследовать определенную комбинацию генетических вариантов на каждой хромосоме. Мейоз перемешает аллели и образует новые комбинации. Некоторые потомки мухи унаследуют маленькие крылья и слабую иммунную систему. Зато у других благодаря мейозу крылья окажутся мощными, а иммунная система – сильной. Эти здоровые мухи смогут размножиться, и их потомки будут поддерживать популяцию в следующих поколениях. В итоге в популяции сохранятся комбинации лучших аллелей, а вредные мутации канут в небытие.
Биолог из Гарварда Майкл Десай проверил эту идею, сравнив между собой разные дрожжи. Он выбрал эти одноклеточные грибы за их гибкость в отношении размножения. Дрожжи могут клонировать себя бесполым путем или размножаться половым. Для клонирования дрожжевая клетка выращивает почку, которая выпирает из ее клеточной стенки. Материнская клетка удваивает свои хромосомы и отправляет копии в почку, которая затем может оторваться, чтобы стать самостоятельной клеткой.
Иногда дрожжи переходят к половому размножению[362]. У той линии, что использовал Десай, есть два типа спаривания, они называются