Книги

Она смеется, как мать

22
18
20
22
24
26
28
30

В 2004 г. полдюжины смельчаков согласились выпить молоко из двух чашек. В первой был миллиард Enterococcus faecium. Эти бактерии были выделены из человека, и их можно было легко убить с помощью антибиотика ванкомицина. Через три часа шестеро добровольцев выпили и вторую чашку, где находился еще один миллиард E. faecium, полученных из кур. У этих бактерий были гены, делающие их устойчивыми к ванкомицину.

Питье молока было частью эксперимента, проводимого Датским национальным центром по контролю инфекций и антимикробных препаратов. В течение следующего месяца ученые брали на анализ стул шести испытуемых и исследовали его на наличие двух штаммов E. faecium. Куриный штамм быстро поредел и через несколько дней исчез. Человеческий же, лучше приспособленный к новому хозяину, сохранялся дольше.

Однако у трех из шести испытуемых ученые заметили изменения в человеческом штамме. У бактерий из поколения в поколение передавался новый ген, которого не было в начале эксперимента. Они унаследовали от куриного штамма ген устойчивости к ванкомицину.

Микроорганизмы могут горизонтально принимать гены даже от своих злейших врагов – вирусов. Вирусы – это гены, окруженные белковой оболочкой, и у них особая форма наследственности, не такая как у клеток. Вирус не воспроизводится сам, копируя свои гены, и не делится на два. Вместо этого он внедряется в клетку-хозяина. Например, бактериофаги – вирусы, атакующие бактерий, обычно прикрепляются к клеточной стенке хозяина и впрыскивают внутрь нить ДНК, как будто выдавливают из шприца спагетти. У бактерий есть несколько способов распознать и уничтожить вирусную ДНК. Но ни один из них не идеален. Если вирусные гены выживают в клетке, они начинают ею командовать. Бактерия делает белки по инструкции, записанной в вирусных генах. Эти белки заставляют клетку создавать новые вирусы, комплектуя их новыми копиями вирусных генов.

Когда речь заходит о вирусах, наследственность становится почти абстракцией. У них нет никаких материальных основ, связующих их с предками, поскольку каждый атом, входящий в новую вирусную частицу, происходит из хозяйской клетки, которая изготавливает вирусы. Для них наследственность – это невидимая ниточка информации, связывающая вирус с его потомками.

Когда гены упаковываются в новые вирусы, иной раз происходит сбой. Внутрь вирусной оболочки может попасть ген от бактерии-хозяина. Такой новый вирус, покидая бактерию, будет нести ее ген вместе со своими, и впоследствии он способен проникнуть в нового хозяина. Иногда эти бактериальные гены встраиваются в хромосому этого нового хозяина. Таким образом вирусы могут выступать в роли стихийных транспортных средств, перенося гены бактерий от одной клетки к другой, а случается даже, что и между разными видами.

__________

Когда ученые стали исследовать микроорганизмы подробнее, то обнаружили еще более странную форму наследственности. Одна из наиболее необычных разновидностей бактериальной наследственности была открыта в начале 2000-х гг. в процессе изучения защиты микроорганизмов от вирусов.

Оказывается, многие виды бактерий могут научиться распознавать новый вирус, а в дальнейшем быстро и прицельно его уничтожать. У позвоночных животных, таких как мы с вами, есть похожая способность. Когда нас атакуют вирусы гриппа или ОРВИ, наша иммунная система создает антитела, которые уничтожают эти вирусы при повторном заражении. Бактерии не могут использовать иммунную систему, состоящую из миллиардов клеток: они состоят из единственной клетки, которая должна сама заботиться о себе. И они справляются с этой задачей, используя молекулярную систему CRISPR-Cas[347].

Когда вирус атакует бактерию, он обычно прикрепляется к своей жертве и вводит внутрь нить ДНК. Многие микроорганизмы могут отрезать кусочек этой чужеродной ДНК и вставлять его в определенное место собственной ДНК, которое называется CRISPR (clustered regularly interspaced short palindromic repeats – короткие палиндромные кластерные повторы).

Если бактерия выживает после первой атаки этого вируса, то теперь у нее есть защита от следующей. Она готовится к ней, синтезируя короткие молекулы РНК, которые соответствуют кусочку вирусной ДНК, полученной во время первой атаки. Белок под названием Cas окружает эти молекулы РНК, и они вместе плавают в клетке.

Если тот же вид вируса попытается ввести свою ДНК в клетку, система CRISPR-Cas будет прикрепляться ко всем поступающим ДНК. Белок Cas разъединяет нити вирусной ДНК и разрезает их на кусочки. Нашинкованный на безобидные фрагменты вирус уже не может причинить вред бактерии.

В ходе сражения с разными вирусами микроорганизм может накопить образцы ДНК от многих врагов. И когда он делится, то передает накопленное потомкам. Когда бактерия копирует свою хромосому, она копирует участок CRISPR вместе со всей остальной ДНК. Барьер Августа Вейсмана[348] может предотвратить влияние жизненного опыта животного на его половые клетки. Но для бактерий такого барьера не существует. В каком-то смысле соматическая и зародышевая часть у них слиты в единую клетку.

Некоторые исследователи считают, что система CRISPR – это самый что ни на есть пример наследования по Ламарку[349]. Конечно, бактерии, воюющие с вирусами, сильно отличаются от тянущихся к листьям жирафов, которых представлял себе Ламарк, и поэтому такое сравнение может свестись к дискуссии о терминах. Но совершенно точно можно утверждать, что с обнаружением системы CRISPR ученые открыли еще один путь наследственности в обход закона Менделя.

__________

Около 1,8 млрд лет назад на Земле появилась новая форма жизни. Новые клетки были намного крупнее бактерий и архей. Свою ДНК они с особой осторожностью спрятали внутри мешочка, который стал называться ядром. Клетки синтезировали огромное количество клеточного топлива с помощью специальных капсул – митохондрий. Мы с вами вместе со многими другими видами тоже относимся к данной форме жизни.

Эти монстры среди микроорганизмов получили название «эукариоты»[350]. Их потомки дали начало группе простейших – хищников микромира, которые охотились на свою одноклеточную добычу в почвах и водах. Эукариоты эволюционировали и теперь представляют всю многоклеточную жизнь на Земле, включая грибы, растения и нас, животных. Помимо ядра и большого размера у эукариот есть еще много черт, отличающих их от бактерий и архей. И одна из них наиболее важна для наследственности: эукариоты передают свои гены потомкам уникальным способом, тем самым, который отражен в законе Менделя.

У бактерий и архей хромосома всего одна, а у эукариот хромосомы парные. У разных видов разное количество этих пар. У нас, людей, 23 пары, а у гороха – всего семь. У дрожжей – 16. У некоторых бабочек – 134.

Когда наши соматические клетки делятся, они копируют все хромосомы, создавая дополнительную пару к каждой. Затем ядро распадается, хромосомы растягиваются поровну по разным сторонам клетки, и она разделяется посередине. В каждой новой клетке, таким образом, получаются свои 23 пары. Данный способ деления называется «митоз», и по сути он похож на то, что происходит у бактерий: это деление одной клетки на две одинаковые.

Митоз у нас происходит для роста и обновления тела. Однако для создания половых клеток нам нужно, чтобы в сперматозоиде или яйцеклетке был не двойной, а одинарный набор хромосом. Проще всего было бы разделить пары хромосом в соматической клетке и выделить по одному набору на каждую половую. Но в нашем организме так не бывает. Вместо этого запускается чрезвычайно причудливый процесс, который получил название «мейоз»[351].

У мужчин мейоз осуществляется в извитых семенных канальцах, расположенных в семенниках. В стенках канальцев находятся предшественники сперматозоидов – клетки, несущие две копии каждой хромосомы: одну от матери мужчины, другую от отца. Когда эти клетки начинают делиться, вся ДНК удваивается, так что теперь у них есть по четыре копии каждой хромосомы. Однако вместо того, чтобы разделиться, хромосомы остаются вместе. Материнская и отцовская копия каждой хромосомы выстраиваются рядом друг с другом. Специальные белки «садятся» на них и делают разрезы в строго одних и тех же местах этих расположенных рядом хромосом.

Когда клетка исправляет такие нанесенные самой себе разрезы, происходит очень важный обмен. Фрагмент ДНК с одной хромосомы может встать на то же место, но в соседнюю хромосому, и наоборот[352]. Эта молекулярная операция выполняется не очень быстро. В общей сложности клетке нужно три недели, чтобы закончить мейоз. Как только обмен участками произошел, хромосомы расходятся. Затем клетка делится два раза, образуя в итоге четыре сперматозоида. Любая из этих четырех клеток несет одну копию каждой из 23 хромосом. Но в каждом сперматозоиде набор ДНК различен.