Книги

Огарок во тьме. Моя жизнь в науке

22
18
20
22
24
26
28
30

Затем мы могли бы проделать то же самое для пар древесных и наземных видов: {белка, крыса} {древесная лягушка, лягушка} {древесный кенгуру, кенгуру}; затем то же самое – для видов подземных и надземных: {крот, землеройка} {медведка, сверчок} {слепыш, крыса} и так далее. В случае с водными и сухопутными животными можно ожидать, что одним из ответов будут перепончатые лапы, и это довольно очевидно. Но я бы надеялся, что компьютер обнаружит и менее очевидные ответы, скрытые в глубинах организмов животных. Например, что-то в химическом составе крови. И, возвращаясь к “Генетической книге мертвых”, мы могли бы проделать то же упражнение с генами. Есть ли гены, связывающие одних водных животных с другими, хоть они и не близкие родственники? Обычно мы ожидаем, что генетические сопоставления сообщат нам о том, какие животные близкородственны друг другу. Морские и сухопутные игуаны, будучи близкими родственниками, наверняка окажутся очень похожими по большинству своих генов. Но я бы надеялся и на обратное: найти горстку генов, которые объединяют морских игуан с другими морскими животными и отличают их от сухопутных игуан и других сухопутных животных: может быть, например, ген, связанный с выведением из организма соли.

Об этом всем мы долгие годы размышляли, беседовали и спорили со студентами на консультациях, и в конце концов я придумал выражение “Генетическая книга мертвых” и предположил, что достаточно осведомленный зоолог, столкнувшись с неведомым животным, будет способен с помощью компьютера воссоздать образ жизни этого животного – точнее говоря, его предков. В частности, в генах, которые помогли предкам этого животного выжить, закодировано описание мира предков: хищники, климат, паразиты, социальные отношения – и все это можно расшифровать.

На консультациях, где мы со студентами набрасывали эти мысли, я помнил и своего учителя, Артура Кейна, и его изречение: “Животное таково как есть, потому что таким ему и нужно быть”. Когда-то, в студенчестве, я сидел в оксфордском пабе “Королевский дуб” (известном как “докторский паб”, потому что напротив располагалась старая больница Рэдклиффа) и в одиночестве ужинал, вынужден с досадой признать, яичницей с беконом. Так совпало, что Артур занимался тем же самым в том же пабе, так что мы сели вместе (признаю и это с досадой – так же встретились два “путешественника”-бизнесмена, основавшие христианское содружество “Гедеоновы братья”). Мы беседовали о таксономии и приспособлении, и в какой-то момент Артур пояснил свои рассуждения примером: белку можно описать как крысу, отдалившуюся на определенное расстояние от крысоподобного предка по “шкале древесности”. Этот образ запал мне в память и лег в основу главы в книге “Расплетая радугу” под названием “Генетическая книга мертвых”, а также в основу Музея всех возможных животных, основной темы двух глав книги “Восхождение на гору Невероятности” (см. ниже). Но музей был более прямо связан с моими опытами компьютерного моделирования, которые я начал, когда писал “Слепого часовщика”.

Эволюция в пикселях

Третья глава книги “Слепой часовщик”, “Накопление небольших изменений”, потребовала столько же времени и усилий, как все остальные десять глав вместе. А все из-за того, что я проводил недели и месяцы за написанием набора компьютерных программ, который назывался “Слепой часовщик”: программы путем искусственного отбора выращивали на экране “компьютерных биоморфов”. Слово “биоморф” я позаимствовал у своего друга Десмонда Морриса, чьи сюрреалистические картины изображают квазибиологические формы жизни: по его собственным, совершенно правдоподобным, словам, изображенные существа “эволюционируют” от холста к холсту. Картина Десмонда “Долина зарождения” стала обложкой книги “Эгоистичный ген”. На одной из выставок Десмонда я купил оригинал: его цена (750 фунтов) в точности совпадала с авансом, который мне выдало издательство “Оксфорд юниверсити пресс”, и на меня накатила блажь. Десяток лет спустя я рассказал Десмонду о “Слепом часовщике”, и название так увлекло его, что он тут же принялся за работу – одноименную картину. И эта картина (правда, она имеет больше отношения к названию, чем к содержанию книги) позже украсила обложки “Слепого часовщика” в изданиях как “Лонгмен”, так и “Пенгвин”.

Программу с компьютерными биоморфами я написал на “Паскале” – давно устаревшем языке программирования, который, в свою очередь, был прямым потомком еще более устаревшего “Алгола-60”, который я выучил в студенчестве. Я все время обращался к инструментарию Apple Macintosh — набору встроенных программ на машинном коде, благодаря которому “Мак” выглядит и работает так, как мы привыкли (и его так часто пытаются копировать). Полдюжины технических руководств к маковскому инструментарию стали моей библией – все более замусоленной и испещренной заметками.

Еще я все время обращался за советами и помощью к Алану Грейфену, человеку неистощимого терпения: не то чтобы он лучше меня умел программировать на “Маке”, вовсе наоборот, – но у него были неоспоримые преимущества по части IQ. Как мог бы выразиться П. Г. Вудхауз, “по той части, что у нас выше запонки воротника, Алан непревзойден”. Или, как сказала о нем Мэриан: “У него есть эта раздражающая привычка оказываться правым”. Во время моего программистского марафона Алан как-то раз весьма заботливо заметил, что сочувствует мне: я завяз в особенно сложном коде, но забрался слишком глубоко, чтобы бросить. Звучит по-конкордовски, и в каком-то смысле так и было: бросить значило бы выкинуть всю работу, которую я уже туда вложил. Но дело было не только в этом. Меня толкала вперед биологическая интуиция, практически инстинктивное чутье; осмелюсь даже слегка гордиться этим: я, как биолог, унюхал нечто, что должно сработать. Меня гнало вперед убеждение, что из моего алгоритма для генерации биоморфов должно возникнуть нечто многообещающее – если только я справлюсь и выберусь из трясины сложного кода.

Главным была фрактальная сущность вложенной “эмбриологии” моих биоморфов: рекурсивная процедура выращивания деревьев, количественные подробности которой задавались набором из девяти чисел (а в более поздних версиях программы их было больше), которые я назвал генами. Очевидно, что изменение численных значений генов изменяло морфологию биоморфа. Но не так очевидно, что изменение часто происходило в биологически интересном направлении. Я привнес дарвинизм (но не половое размножение), “выводя” бесполым образом биоморфов-потомков от биоморфов-родителей при помощи искусственного отбора. Компьютер предлагал варианты потомков со слегка мутировавшими генами, и человек выбирал, какой потомок породит следующее поколение, – и так далее, бесконечное число раз. Численные значения генов были скрыты: подобно заводчикам скота или роз, заводчик биоморфов видел лишь последствия генетических изменений – морфологию на экране компьютера.

В мечтах я предвидел, что возникнет нечто интересное и неожиданное. Но я не смел надеяться, что мои биоморфы эволюционируют от ботаники до самой энтомологии!

Составляя программу, я никак не думал, что она сможет выдать что-нибудь кроме различных древовидных форм. Я ожидал плакучих ив, ливанских кедров, пирамидальных тополей, водорослей, в крайнем случае – оленьих рогов. Ни моя биологическая интуиция, ни мой двадцатилетний опыт программиста, ни самые дерзкие из моих фантазий – ничто не подготовило меня к тому, что я увидел на экране. Уже не помню, в какой именно момент меня осенило, что из получающейся последовательности может выйти нечто, напоминающее насекомое. Охваченный этой нелепой догадкой, я из поколения в поколение стал отбирать те биоморфы, которые были похожи на насекомых хоть сколько-нибудь больше других. Чем сильнее проступало сходство, тем меньше я верил своим глазам. <… > До сих пор не могу удержаться и не поделиться с вами тем чувством ликования, которое я испытал, когда эти изящные существа впервые возникли передо мной на экране. В голове отчетливо зазвучали торжествующие начальные аккорды из “Так говорил Заратустра” (главный мотив в фильме “Космическая одиссея 2011 года”). От волнения я не мог есть, а ночью, когда попытался заснуть, у меня перед глазами, стоило лишь закрыть их, кишели “мои” насекомые.

Существуют и продаются компьютерные игры, в которых игроку кажется, будто он блуждает по подземному лабиринту, имеющему определенную, хотя и сложную, географию, и встречает там драконов, минотавров и прочих сказочных противников. Эти чудовища не слишком разнообразны, и все они, так же как и сам лабиринт, были разработаны человеческим разумом программиста. В эволюционной игре – как компьютерной, так и реальной – у игрока (или у наблюдателя) тоже создается впечатление, что он, образно говоря, бродит по лабиринту разветвленных коридоров, но только количество возможных маршрутов практически бесконечно, а монстры, встречающиеся на пути, непредумышленны и непредсказуемы. Когда я скитался по закоулкам Страны биоморфов, мне попадались жаброногие рачки, храмы ацтеков, окна готических соборов, наскальные изображения кенгуру, а однажды – памятный, но не желающий воспроизводиться случай – вполне приемлемая карикатура на теперешнего профессора логики имени Уайкхема.

Последний абзац затрагивает один из основных биологических уроков, что я вынес из этого упражнения в программировании. Перед моим внутренним взором стояла Страна биоморфов, многомерный морфологический ландшафт, девятимерный гиперкуб, в котором скрывались все возможные биоморфы – каждый соединялся со всеми остальными плавной траекторией пошаговой эволюции. В теории (хоть и не так аккуратно, потому что количество генов не задано) мы можем представить себе всех возможных реальных животных, расположенных в n-мерном гиперкубе: в третьей главе “Слепого часовщика” я назвал это генетическим пространством. Большинство обитателей этого чудовищного (выбор слова не случаен) гиперкуба не только никогда не существовали, но и не выжили бы, если бы появились: “Количество способов быть мертвым неизмеримо больше количества способов быть живым” (эта фраза, к моему удовольствию, вошла в “Оксфордский словарь цитат”). Существующие животные – островки в этом гиперпространстве, рассеянные далеко друг от друга, будто в некоей Гиперполинезии: они окружены прибрежными рифами из близкородственных животных и отделены от остальных островов во многом непреодолимыми пространствами невозможных животных. Реальная эволюция отражена в траекториях внутри гиперкуба. Видите ли, хоть я и не силен в решении уравнений, но, может быть, во мне есть зачатки математической души. По крайней мере, я на это надеюсь.

Набор биоморфов, выведенных программой “Слепой часовщик”.

Позже Дэн Деннет плодотворно развил мою идею под названием “Менделевская библиотека”, а я подхватил ее дальше в книге “Восхождение на гору Невероятности”, в воображаемом Музее всех возможных животных:

Представьте себе музей с залами, простирающимися во все стороны, а также вверх и вниз сколько хватает глаз. В его хранилищах собраны все виды животных, которые когда-либо существовали в природе или гипотетически могли бы существовать. Каждый вид помещается рядом с теми, на кого он больше всего похож. Направление одной музейной галереи – это одно измерение, отвечающее тому или иному направлению, в котором может проявляться изменчивость животных. <… > Галереи должны пересекаться всевозможными способами, и не только в привычном для нас и нашего восприятия трехмерном пространстве.

В книге “Восхождение на гору Невероятности” я говорил об этом музее на особом примере раковин моллюсков. Довольно давно было понятно, что раковина – это (логарифмически) расширяющаяся трубка, которая растет с краю. Если не обращать внимания на форму поперечного сечения трубки (скажем, принять ее за круг), то форма любой раковины определяется всего лишь тремя числами, которые в “Восхождении на гору Невероятности” я назвал “расширение”, “червячность” и “конусность”. “Расширение” определяет, с какой скоростью трубка расширяется по мере роста, “конусность” – ее отклонение от плоскости. У типичного аммонита конусность равна нулю (он лежит в одной плоскости), а вот у раковины Turritella она высока. Расширение высоко у моллюска-сердцевика (“трубка” расширяется так быстро, что моллюск обретает конечную форму, так и не дойдя до подобия трубки), но низко у Turritella. “Червячность” дольше объяснять словами, но воплощением высокой “червячности” на иллюстрации служит Spirula. Американский палеонтолог Дэвид Рауп сообразил: если разнообразие форм ряда животных определяется всего лишь тремя числами, то этих животных можно расположить в простом математическом пространстве – в трехмерном кубе. Обойдемся без гиперкуба – достаточно будет обычного куба. И таким же образом я сообразил, что могу написать версию биоморфной программы для улиток, где будет всего три гена вместо девяти. Я бы выбирал для дальнейшего размножения не набор древоподобных биоморфов, а набор улиткоморфов – или, чтобы не смешивать языки, конхоморфов. Если поколение за поколением выбирать определенного “производителя”, можно провести эволюцию от любой одной раковины к любой другой. Эволюция воплотится в пошаговой траектории сквозь куб всех возможных раковин.

Раковины, на которых видно “расширение”, “червячность” и “конусность”:

(a) высокое “расширение”: Lt conch a castrensis, двустворчатый моллюск;

(b) высокая “червячность”: Spirilla: (с) высокая “конусность”: Turritella terehra.

Чтобы написать программу, мне требовалось всего лишь заменить старую девятигенную эмбриологию биоморфов на новый модуль трехгенной эмбриологии раковин. Все прочее оставалось без изменений. И вправду, оказалось очень просто вырастить любую раковину из любой другой – просто выбирая в каждом поколении раковину, которая больше всего была похожа на конечную цель. В те времена еще не было 3D-принтеров, а то бы я мог напечатать весь свой куб. Но пришлось обойтись тем, чтобы напечатать шесть его граней на плоских листах бумаги, которыми я обклеил картонную коробку. На цветной вклейке есть фотография: Лалла держит в руках “коробку улиток”.