Джон, родившийся недоношенным на сроке двадцать шесть недель, весил около килограмма. Он не мог самостоятельно дышать и первые два месяца своей жизни провел в инкубаторе, подключенный к аппарату искусственной вентиляции легких. Однако он рос абсолютно здоровым – до четырех лет, когда с ним случились два эпилептических припадка. Примерно годом позже родители стали замечать, что Джон не помнит то, что происходило в его жизни. Он не помнил, что смотрел по телевизору, что произошло в школе, какую книгу он читал накануне вечером. Когда Джона осмотрели нейробиологи, они нашли другие нарушения. Он не мог найти дорогу, не помнил знакомую обстановку, расположение предметов и личных вещей. Примечательно, что интеллект мальчика не пострадал – он умел читать, писать, говорить, хорошо успевал в школе. Семантическая память, не связанная с личным опытом, была абсолютно нормальной.
Больше ста лет нарушение памяти у таких людей, как Джон, позволяло ученым изучать память. Вероятно, в научной литературе чаще всего упоминался «пациент Г. М.»: в 1950-х гг. двадцатисемилетнему молодому человеку, страдавшему эпилепсией, удалили часть височных долей коры головного мозга, после чего он утратил способность формировать и извлекать воспоминания. Пациент Г. М., которого звали Генри Молисон, описывал свое состояние как «пробуждение от сна»[69]. Окружение казалось ему незнакомым; он всегда находился в «новом» месте. Ему понадобилось несколько лет, чтобы запомнить план собственного дома. По этой причине он не узнавал людей, которые несколько десятков лет изучали его память, или дорогу к местам, которые он посещал многие годы. Одним из таких мест был Массачусетский технологический институт, где в Лаборатории поведенческой неврологии с 1962 по 2008 г. проводили эксперименты с Молисоном вплоть до его смерти.
Именно случай пациента Г. М. впервые заставил ученых предположить, что гиппокамп служит источником эпизодической памяти – способности формировать воспоминания о местах и событиях, составляющих нашу автобиографию, и извлекать их. В случае с Джоном нейробиологи выявили причину, по которой он не мог вспомнить прошлое или найти дорогу, после того как с помощью МРТ получили изображение его мозга. Недостаток кислорода – гипоксия – в младенческом возрасте и последующие эпилептические припадки привели к редкому и серьезному повреждению клеток гиппокампа, остановив его рост. В результате он оказался аномально маленьким, приблизительно вполовину меньше нормального гиппокампа. Джон – один из нескольких детей, с чьей помощью исследуют природу гиппокампальной амнезии. «Это удивительные дети, – говорит Ньюком. – Их всего четверо или пятеро, и у всех разные повреждения мозга. Но все они абсолютно нормальны: разговаривают, учатся в школе, запоминают факты, но не помнят своей жизни – у них отсутствует автобиографическая память. И они не могут найти дорогу в школу, в которую ходят четыре года и которая находится всего в двух кварталах от дома».
Как выяснилось, существуют интересные параллели между людьми с нарушениями памяти, такими как Джон, и всеми детьми в первые годы жизни. У детей восприятие пространства, а также память на места и события не такие, как у взрослых, – они намного ярче и в большей степени насыщены эмоциями, но недолговечны и фрагментарны. Дети могут формировать воспоминания, но склонны их забывать; их память похожа на нить накала, которая быстро перегорает. Со времени публикации первых научных статей о состоянии пациента Г. М. и о случае Джона прошло уже несколько десятилетий, и научные знания о гиппокампе и его вкладе в развитие ребенка и память быстро расширяются. Ученые обнаружили в нейронных сетях гиппокампа разные типы клеток: нейроны направления головы возбуждаются в зависимости от того, куда повернута наша голова в горизонтальной плоскости, а нейроны решетки – при движении, строя координатную сетку для ориентирования и нахождения верного маршрута в окружающем мире. Нейроны места активизируются только в определенном месте пространства, которое называется полем места. Изображения, полученные сканированием мозга, предполагали присутствие этих клеток в мозгу человека, но доказать их существование и зарегистрировать их активность удалось лишь в процессе лечения эпилепсии, когда электроды вживлялись прямо в мозг. Другие типы пространственных нейронов характерны для тех или иных таксонов. Например, у обезьян (но не у грызунов) есть нейроны направления взгляда, которые возбуждаются, когда животное смотрит в определенном направлении.
Многие в наше время убеждены, что именно созвездия всех этих клеток, мигающие, словно гирлянда, в нашем мозге, позволяют нам определять наше местоположение и строить маршрут. По имеющимся данным, младенчество и раннее детство – это важные периоды, во время которых клетки гиппокампа начинают созревать и кодировать пространство – или, как выражаются некоторые исследователи, картировать его. Когда дети исследуют окружающий мир и создают его пространственное отображение, этот опыт может закладывать нейронную основу для эпизодической памяти, нашей способности помнить события повседневной жизни.
Нейробиолог Линн Надель заинтересовался процессом развития гиппокампа в 1970-х гг.; в это же время он написал работу «Гиппокамп как когнитивная карта» (The Hippocampus as Cognitive Map). Его соавтором был Джон О’Киф, известный специалист по изучению памяти. Они писали, что у разных животных гиппокамп созревает в разное время, в отличие от некоторых других отделов мозга, сравнительно зрелых к моменту рождения. Например, у мышей и крыс приблизительно 85 % клеток зубчатой извилины – области сенсорного ввода гиппокампа – формируются в течение нескольких дней после рождения, что соотносится с первыми двумя годами жизни человека. «Самый большой прирост новых синапсов наблюдается в период между 4 и 11 днями после рождения, когда количество синапсов ежедневно удваивается, а синаптическая плотность увеличивается в 20 раз»[70].
Они предположили, что, для того чтобы система пространственного картирования в мозгу начала создавать отображение окружающего мира, необходим восхитительный триггер – исследование. Животные заняты самой разной деятельностью: строят гнезда, ищут еду, ходят, плавают, летают, спят. Но кроме того, они исследуют мир – это поведение наблюдается тогда, когда животное сталкивается с незнакомым или новым местом и начинает собирать о нем информацию с помощью физического взаимодействия. В контексте теории когнитивной карты Надель и О’Киф утверждали, что исследование критически важно для построения карты, поскольку клетки кодируют пространство и делают незнакомое знакомым. Новизна – это когда объект или место «не имеет отображения в локальной системе и поэтому возбуждает клетки несоответствия в этой системе»[71]. По их прогнозам, если бы гиппокамп исчез, у животных исчезло бы и исследовательское поведение – и это подтверждается изучением травм мозга. Но в чем причина задержки созревания системы пространственного картирования? Возможно, ее развитие запаздывает для того, чтобы молодые животные, все еще зависящие от матери, не покидали гнездо, пытаясь исследовать окружающий мир, и не подвергали себя риску.
После публикации книги Надель продолжил размышлять о последствиях задержки созревания. «У нас была теория о том, что делает гиппокамп, но что будет, если гиппокамп
В 1984 г. Надель опубликовал гипотезу, основой которой послужил тот факт, что время, в течение которого у детей проявляется амнезия, соответствует постнатальному периоду созревания гиппокампа у крыс. Его соавтором в этой работе был Стюарт Золя-Морган. Они предположили, что эпизодическая память возможна только после того, как мозг обретет способность к научению месту, и что младенческая амнезия соответствует периоду, когда система пространственной памяти в гиппокампе еще недоразвита. Животные не исследуют окружающий мир случайным образом; их действия структурированы, они переходят из одного места в другое и редко возвращаются туда, где уже были, – разве что им приходится исследовать действительно большую территорию. «Такая модель действий предполагает существование внутренних образов, которые отражают пространственную структуру окружающего мира», – писали исследователи. У крыс, морских свинок и кошек исследовательское поведение появляется после того, как гиппокампальная система достигает зрелости. «Если механизма еще нет, система не будет работать»[72]. И кроме того, способность хранить информацию о различном окружении с целью исследования пространства и научения месту – как у молодых животных, так и у детей – позволяет кодировать события и места, где те произошли, увеличивая вместимость памяти.
Через 30 лет после публикации этой гипотезы Надель признался мне, что теперь считает ее, скорее всего, слишком упрощенной – как в определении младенческой амнезии, так и в природе развития гиппокампа, которая различается у разных видов животных. «Гиппокамп не возникает мгновенно – сегодня его нет, а завтра уже есть. Функции гиппокампа проявляются постепенно, – говорил он. – Теперь мы больше знаем об этапах этого процесса. Выяснилось, что развитие происходит неравномерно. Главное, что нам известно: для хорошей эпизодической памяти нужен
Надель и Золя-Морган ясно выразили главную загадку восприятия пространства: есть ли в нашем мозге при рождении все необходимое для развития пространственной памяти или опыт важен для формирования мозговой инфраструктуры? С той поры развитие гиппокампа и его связь с памятью оставались одной из самых увлекательных тем нейробиологии. Как сказала Джеффри: «Люди начали изучать развитие, и теперь у нас довольно много интересных работ, предполагающих, что первыми “в режим онлайн” переходят нейроны направления головы, затем нейроны места, а затем нейроны решетки». И действительно, полученные данные указывают, что некоторые компоненты когнитивной карты присутствуют в мозге новорожденного ребенка, но в раннем детстве мы проходим период приобретения пространственных знаний, который влияет на то, насколько хорошо мы будем справляться с такими задачами в будущем.
В 2010 г. две разные группы исследователей добились потрясающего успеха: не стесняя движений крысят, у которых еще не закончился период молочного кормления и чей размер не превышал величины перепелиного яйца, ученые вживили им в мозг электроды и записали активность отдельных нейронов гиппокампа. Специалистам из Норвежского университета естественных и технических наук и из Университетского колледжа Лондона удалось записать сигналы сотен нейронов направления головы, нейронов места и нейронов решетки на протяжении двух недель, начиная с шестнадцатого дня жизни крысы. Обе группы выяснили, что все три типа клеток присутствовали у животных уже через два дня после того, как у них раскрылись глаза – то есть
Исследования приматов и изучение поведения детей позволили нейробиологам понять, как этот же процесс может проходить у людей в молодости. Швейцарские нейробиологи Пьер Лавене и Памела Банта Лавене предположили, что в возрасте около двух лет созревает область гиппокампа CA1, играющая важную роль в дифференциации объектов в долговременной памяти. В последующие годы созревает зубчатая извилина, необыкновенно пластичная область мозга, в которой нейрогенез – появление новых нейронов – продолжается и во взрослом возрасте; эта извилина необходима для формирования новых воспоминаний. К шести годам у детей наблюдается сильная положительная корреляция между объемом гиппокампа и эпизодической памятью: чем больше объем, тем выше способность вспоминать подробности события. Шесть лет – это средний возраст ослабления детской амнезии.
На протяжении всего этого периода для гиппокампа очень важно обучение, которое способствует росту и тренировке нейронов. И более того, некоторые исследователи убеждены: если хоть ненадолго лишить детей возможности исследовать окружение и, условно говоря, строить маршруты, это негативно скажется на когнитивных способностях и памяти. В 2016 г. исследователи из Центра нейробиологии Нью-Йоркского университета опубликовали результаты своей работы, показав, насколько сильно развитие гиппокампа зависит от опыта обучения. Исследователи выбрали два возраста развития у детенышей крыс: семнадцатый день после рождения, приблизительно соответствующий двум годам у человека, и двадцать четвертый день, который соответствует возрасту ребенка от шести до десяти лет. Измеряя молекулярные маркеры в гиппокампе, ученые смогли показать, как опыт влияет на созревание данной структуры в этот период развития. Затем они повышали или понижали уровень упомянутых молекул, тем самым манипулируя гиппокампом крыс, чтобы либо ускорить сохранение данных в памяти, либо продлить период младенческой амнезии. И вывод был таким: младенческая амнезия представляет собой тип критического периода, – окно пластичности, когда стимуляция со стороны окружающей среды активно формирует мозг.
«В критические периоды мозг особенно чувствителен: если он не получает нужных стимулов, его развитие останавливается, – говорит Алессио Травалья, постдокторант и автор исследования. – Мозг созревает с помощью опыта. Мы считаем, что без должной стимуляции гиппокамп не будет развиваться. И дело не только в младенческой амнезии; мы полагаем, что этот критический период созревания очень важен как для обучения, так и для потребностей детей. – Травалья приводит пример с глазом. – Первые подобные эксперименты проводились в шестидесятых. Если заклеить глаз и ходить так неделю, возможно, к концу недели ничего и не произойдет. Но оказалось, что, если заклеить глаз детенышу животного в критический период, животное не будет видеть этим глазом и останется слепым навсегда. Другой пример критического периода – речь. Например, если ребенок осваивает иностранный язык в очень раннем возрасте, он будет свободно говорить на нем»[75].
Травалья и его коллеги считают, что гиппокампу для созревания необходимы опыт и возможности. «В отношении людей предположение заключается в том, что мозгу также нужна надлежащая стимуляция в критический период. Это значит, что детям необходимы шум, игры, окружение, забавы, и отсутствие этих стимулов может сказаться впоследствии», – говорил он мне.
Возможно, один из самых важных этапов в развитии ребенка – переход к самостоятельному передвижению. Возможно, именно изменения в движении влияют на то, как пространственная информация кодируется в памяти? Например, в 2007 г. группа английских исследователей выяснила, что переход к ползанию у девятимесячных младенцев ассоциировался со стремительным возрастанием когнитивных навыков: дети обретали более гибкую и сложную способность извлекать воспоминания из памяти. Артур Гленберг, профессор психологии из Университета штата Аризона, выдвинул гипотезу, согласно которой начало самостоятельного передвижения способствует созреванию гиппокампа: у младенцев, совершающих свои первые перемещения в пространстве, нейроны места и нейроны решетки могут начать подстройку под окружающий мир, что в конечном итоге облегчает формирование инфраструктуры долговременной памяти. Он считает, что настройка этих нейронов зависит от непрерывной корреляции между оптическим потоком, направлением головы и бессознательным восприятием пространственной ориентации от самостоятельных движений; до того как младенцы начинают самостоятельно перемещаться в пространстве, вся система остается незрелой и ее вклад в память ненадежен. Когда маленькие дети начинают ползать и исследовать окружающий мир, вырабатывая условный рефлекс, призванный кодировать положение в пространстве, это движение может стать своего рода «строительными лесами» для долговременной эпизодической памяти, и ребенок меньше забывает. Гипотеза Гленберга также дает интересное объяснение ухудшению памяти в пожилом возрасте: по мере старения тела уменьшаются подвижность и исследовательское поведение. Возможно, предполагает он, возбуждение нейронов места и нейронов решетки гиппокампа становится не связанным с окружающей средой, в результате чего ослабевает способность вызывать воспоминания.
Идея Гленберга не в состоянии в полной мере объяснить существование столь большого временного промежутка между
В 1999 г. группа ученых из Института биологических исследований Солка в Калифорнии под руководством Расти Гейджа выяснила, что физические упражнения способствуют нейрогенезу в гиппокампе взрослых людей, в частности в зубчатой извилине – той зоне, в которой в гиппокамп входит большая часть связей с другими областями мозга и которая участвует в формировании эпизодической памяти. Недавно трое исследователей из Национальных институтов здравоохранения США, изучавшие старение, сравнили нейроны взрослых мышей, которые провели месяц в клетке с беличьим колесом, с нейронами мышей, которые бегали в колесе неделю, и с нейронами животных, живших в клетке без колеса. В мозге мышей из обеих групп с колесом были обнаружены новые нейроны, а длина дендритов нервных клеток оказалась больше. Ученые решили, что бег, возможно, способствует кодированию пространственной информации, усиливая генерацию нейронов и перестраивая нейронные цепи.
Тот факт, что на развитие гиппокампа влияют такого рода активность и опыт, указывает на его невероятную пластичность, что очень важно для таких сфер, как уход за детьми, образование и лечение когнитивных нарушений. «Это чрезвычайно волнующий факт, потому что созревание мозга часто обусловливают временем и генетической программой, – объяснял мне Травалья. – Мы же демонстрируем, что развитие мозга идет не по фиксированной программе, а определяется