Можно привести примеры менее известных, но не менее поразительных путешествий. Слово
Ученые осмыслили это разнообразие как навигационный инструментарий эволюции. Эту теорию выдвинули в 2011 г. десять известных исследователей, в том числе Кейт Джеффри и Нора Ньюком, изучавшие когнитивные способности как людей, так и животных в надежде сформулировать общие принципы навигации, лежащие в их основе. Ученые разбили все известные механизмы навигации на четыре уровня, отличающиеся по сложности. Первый уровень – это сенсорно-двигательный инструментарий: зрение, слух, обоняние, осязание, магнетизм и проприоцепция. На второй уровень они поместили «пространственно примитивных»[83] животных, которые ориентируются при помощи простейших образов и знаков: к таким ориентирам относятся уклон местности, направление, границы, поза, скорость или ускорение. На третьем уровне располагаются более сложные интеграции этих инструментов, позволяющие строить пространственные конструкты наподобие внутренней когнитивной карты. Четвертый уровень составляют пространственные символы: внешние карты, указатели, человеческая речь – то есть способность передавать информацию о пространстве. Согласно этой теории, простейшие инструменты являются базовыми – они появились на раннем этапе эволюции и пережили множество эпох, – а более сложные синтезированы из простых.
Но представление способностей животных к навигации в виде инструментария порождает новые вопросы, приводящие в замешательство. Очень часто оказывается, что животные, которые, по мнению ученых, пользуются относительно простыми средствами, на самом деле имеют в своем распоряжении гораздо более гибкие и сложные инструменты. По всей видимости, некоторые животные используют все инструменты, а другие, которым вроде бы по логике вещей требуются самые сложные, обходятся простыми. А часть самых простых инструментов мы вообще не понимаем. У нас есть свидетельства их существования, но мы их не видим и почти не представляем, как они работают. По этим причинам некоторые из самых удивительных научных загадок относятся именно к навигации животных. Мы накопили огромный массив данных на основе десятков тысяч наблюдений за животными, передвигающимися по нашей планете, но все еще не можем объяснить, как они это делают.
К числу инструментов, необходимых животным для навигации, относятся «часы», то есть внутренний механизм для измерения или отсчета времени. Ежедневная массовая миграция зоопланктона в Мировом океане требует умения определять приближение восхода и захода солнца. На первый взгляд это простая реакция на свет, но глубоководный зоопланктон, обитающий в глубинах, куда не проникает свет, также мигрирует в соответствии с длительностью светового дня на данной широте. Даже чуть более сложные миграции могут потребовать нескольких часовых механизмов. Джеймс Гулд и Кэрол Грант Гулд в своей книге «Природный компас: загадка навигации животных» (Nature’s Compass: The Mystery of Animal Navigation) описывают «жутко согласованную»[84] миграцию бермудских светящихся червей – морских животных, обладающих биолюминесценцией. Они в изобилии появляются в каждый лунный месяц лета, а если точнее, то через 57 минут после захода солнца на третий вечер после полнолуния. В качестве объяснения чета Гулд предложила такую гипотезу: у этих червей должны иметься лунные часы, позволяющие отсчитать период 27,3 дня, суточные часы, отмеряющие период 24 часа, а также интервальный таймер для отсчета пятидесяти семи минут после захода солнца. Животные, для которых характерны ежегодные или многолетние миграции, должны также иметь годовые часы, точно учитывающие продолжительность дней и ночей, а также ее изменение в каждом сезоне. В целом в ходе эволюции, по всей видимости, появились годовые часы, лунные часы, приливные часы, циркадные часы, а у тех, кто мигрирует под покровом ночи, возможно, и звездные часы: они измеряют время, за которое звезда – в зримом представлении – совершает оборот вокруг Земли.
Одним из первых, кто обнаружил, что животные используют для навигации часы, был энтомолог-любитель, который изучал живущих в пустыне муравьев. В 1901 г. швейцарский врач Феликс Санчи покинул родную Лозанну и поселился в удаленном городке в Тунисе. За свою жизнь Санчи описал почти 2 тысячи видов муравьев и дал им название. Он изучал поведение муравьев, и его особенно интересовал вопрос, как муравьи, обитавшие за пределами города, в котором он жил, ориентируются в пустыне. Как отмечал немецкий нейроэтолог Рюдигер Венер, в те времена выдвигалось предположение, что муравьи ориентируются по запаху: идут за едой в каком-либо направлении, а возвращаются по следу, который оставили за собой. Но в пустыне ветер и песок непрерывно меняют ландшафт, сдувая любые запахи или метки, которые муравьи могли бы использовать для ориентировки.
Санчи первым заметил, что муравьи не просто снуют туда-сюда в поисках пищи; они идут кружным маршрутом, а назад возвращаются по прямой. Способность находить кратчайший путь означала, что муравьи выполняют тригонометрические вычисления, определяют взаимное расположение в пространстве всех мест, в которых побывали, и прокладывают прямой путь к дому. Санчи знал, что для этого требуется некий указатель направления, позволявший безошибочно ориентироваться в пространстве, и поэтому предположил, что муравьи используют небесный компас – скорее всего, солнце, следя за его положением при восходе и в течение дня. Для проверки этой гипотезы он с помощью зеркала отразил солнечные лучи – и муравьи, возвращавшиеся домой, повернули на 180 градусов.
Но наша планета движется, и положение солнца на небе меняется. Для того чтобы солнце было надежным средством навигации, животное должно менять угол ориентации в течение дня – только так можно не сбиться с пути. Поэтому, предположил Санчи, муравьи должны иметь внутреннее отображение не только солнца, но и времени, чтобы точно вычислять направление. Позже он даже пытался полностью закрыть от муравьев солнце и выяснил, что они все равно находили дорогу даже по маленькому клочку неба. Впоследствии биологи выяснили, что фасеточные глаза муравья, органы с чувствительными к свету фоторецепторами, могут считывать информацию с синего неба даже в отсутствие солнца и других ориентиров, используя паттерн поляризации света, чтобы помочь муравью сориентироваться в пространстве и найти дорогу домой. Это, как выразился энтомолог Хью Дингл, нечто вроде «заранее “вшитой” небесной карты…»[85].
Пчелы также могут использовать поляризованный свет для того, чтобы находить дорогу. Их называли самыми искусными штурманами в природе: в поисках пищи они совершают до пятисот путешествий в день на расстояние до восьми километров от улья. Подобно живущим в пустыне муравьям, они в поисках пыльцы путешествуют по кружным извилистым маршрутам, но способны находить прямой путь домой. Тому, как им удается находить кратчайший путь к дому, посвящены целые книги и многочисленные исследования – этим интересовался еще Аристотель. Их достижения впечатляют еще больше, потому что пчелы отправляются в далекие путешествия, обладая недостатками, которые мы посчитали бы серьезными. Мозг пчелы весит меньше миллиграмма и содержит меньше миллиона нейронов, и по нашим меркам они практически слепы – острота зрения у них всего 0,01.
Биолог Джеймс Гулд из Принстонского университета несколько десятков лет изучал навигационные способности пчел. На первый взгляд нахождение кратчайшего пути требует так называемого интегрирования по траектории, счисления пути или внутренней навигации: отслеживая каждую стадию путешествия, насекомые могут вычислить свое местоположение и направление к дому. Но еще в начале своей карьеры биолога Гулд обнаружил, что, куда бы он ни помещал пчел в пределах их нагульного ареала, они всегда находили новый кратчайший путь к дому, а это значит, что у них имелась гибкая память или внутреннее представление о пространстве. Другими словами, пчелы используют гораздо более сложный эволюционный инструмент, который часто называют когнитивной картой. Похоже, у пчел есть не только внутреннее представление о пространстве, но и способность передавать эту «карту» другим пчелам, – согласно теории навигационных инструментов, такая способность характерна для человека.
В 1940-х гг. Карл фон Фриш заметил, что пчелы, обнаружив богатый источник пищи во время разведывательного полета, возвращаются к улью и начинают кружить, описывая «восьмерки». У этого танца есть свой язык, особенно если пчелы возвращаются из мест, удаленных на расстояние больше пятидесяти метров. Пчелы двигают брюшком у вертикальной стенки сот, и угол, под которым их тело расположено относительно этой поверхности, соответствует тому углу относительно солнца, под которым следует лететь их товарищам. Более того, продолжительность танца пропорциональна расстоянию от улья до источника пищи. Пчела указывает другим насекомым, куда лететь, иллюстрируя путешествие своим телом. Некоторые пчелы могут танцевать по нескольку часов или возобновлять танец на следующий день – или даже через несколько месяцев холодной погоды, причем точность при этом нисколько не страдает.
В книге «Из жизни пчел», опубликованной в 1950 г., Фриш описывает еще одно свое открытие. Оказывается, что пчелы, подобно муравьям, ориентируются по солнцу, и это означает, что они тоже используют внутренние часы: суточные внутренние часы и сезонный календарь, позволяющий следить за течением времени. Как же пчелы учатся ориентироваться? Третью неделю своей жизни они проводят рядом с ульями, совершая лишь короткие перелеты, во время которых пчела запоминает азимутальные углы солнца и траекторию его движения, учится ориентироваться по нему – и лишь затем предпринимает далекие путешествия за нектаром. В 2005 г. группа немецких и британских ученых под руководством Рэндолфа Менцеля описала эти первые полеты как период формирования исследовательской памяти пчелы – возможно, той самой когнитивной карты, существование которой предположил Гулд. Однако исследователи обнаружили, что эта карта гораздо более подробная и гибкая, чем считалось раньше. В своей статье в журнале Proceedings of the National Academy of Sciences (PNAS) ученые описали свой эксперимент. Они взяли три группы пчел и переместили их ночью, а затем отследили траекторию полета с помощью гармонического радара – антенны передатчика прикреплялись к пчелам и излучали сигнал, регистрируемый приемником. Пчелы узнавали знакомые ориентиры с разных направлений и строили новые маршруты из случайно выбранных мест.
Доказано, что бабочки монархи, ящерицы, креветки, омары, каракатицы, сверчки, радужная форель, а также многие виды перелетных птиц используют поляризованный свет в качестве компаса. Но какова природа этого явления? Конвергентная эволюция – одинаковое направление естественного отбора у разных видов? Или общий древний механизм, присутствовавший у далеких предков и переживший многие эпохи?
Одни животные ориентируются по солнцу, другие по звездам. Известно, что африканский жук-навозник ориентируется по солнцу и луне, но в 2012 г. ученые с удивлением обнаружили, что это насекомое способно находить дорогу даже безлунной ночью. Исследователи выпускали жуков с их навозными шариками в огороженное пространство, которое ограничивало визуальные ориентиры на ночном небе, и снимали движение насекомых на видео. Было совершенно очевидно, что жуки ориентировались и в отсутствие луны, а это значит, что для нахождения пути они использовали звезды. Но как? Яркости большинства звезд, отметили ученые, недостаточно для того, чтобы их заметили глаза жука. Но, после того как жуков принесли в планетарий, стало ясно, что они ориентируются по яркому свечению Млечного Пути. По звездам находят дорогу сверчковые квакши, пауки из пустыни Намиб и совка ленточная большая – ночная бабочка. Некоторые виды птиц, в том числе американский зяблик, мухоловка-пеструшка и славка-черноголовка, по всей видимости, ночью следуют за Полярной звездой: она играет для них роль центра вращения.
Но, даже если мы знаем, какие механизмы используют животные, их точность зачастую находится за пределами понимания ученых. Например, часы многих видов животных гораздо точнее биологических часов человека. Достаточно всего лишь двадцати четырех часов без солнца, чтобы рассогласование наших циркадных часов с действительным временем составило в среднем 60 минут. Для пчелы такая неточность станет настоящей катастрофой. Пятнадцатиминутное рассогласование, объясняет Гулд, может привести к ошибке ориентации пчелы в 10 градусов, что даже на небольших расстояниях выльется в ошибку определения места в несколько метров. Для перелетных птиц, мигрирующих на большие расстояния, таких как малый веретенник, подобная неточность смертельно опасна. Каждую осень эти птицы покидают свои гнездовья на побережье Аляски и направляются на юг, в теплые края. Рациональный маршрут пролегает вдоль континентальной дуги Азии к восточному побережью Австралии, где много ориентиров и мест отдыха по пути. Но малый веретенник летит над безбрежными просторами Тихого океана. За восемь дней и ночей птицы преодолевают больше 10 тысяч километров над пустынными водами, прежде чем прибыть в Новую Зеландию. Если они ошибутся даже на несколько градусов, то отклонятся от курса на сотни километров, не попадут к местам кормежки и гнездовий – и погибнут от голода.
Каждый год горбатые киты мигрируют в открытом океане на расстояние, превышающее 15 тысяч километров. Эти млекопитающие весом 40 тонн перемещаются не по прямой, с севера на юг и обратно; киты возвращаются в те места, где они родились и были выкормлены матерями, что требует исключительных навигационных способностей.
Не так давно группа исследователей под руководством Тревиса Хортона из Университета Кентербери показала, насколько точна навигация у китов, в течение семи лет регистрируя с помощью спутников передвижение шестнадцати помеченных особей. Выяснилось, что большую часть пути киты придерживаются неизменного курса, отклоняясь от него не больше чем на один градус. Этот момент стоит объяснить подробнее. Люди могут придерживаться заданного направления, но только при наличии ориентиров, которые позволяют оценить наше продвижение и скорректировать курс. Без такой корректировки мы, сами того не замечая, начинаем описывать круги. Например, исследователи Ян Суман и Марк Эрнст из Лаборатории биологической кибернетики Института Макса Планка обнаружили, что склонность описывать круги особенно выражена у слепых людей. Если человеку завязать глаза, он начинает ходить кругами диаметром около двадцати метров; это происходит даже тогда, когда испытуемый
Горбатые киты, вероятно, компенсируют влияние внешних сил с помощью пространственной системы координат и ориентиров. Но каких именно? Вероятно, они, подобно многим другим животным, используют солнце в качестве компаса. Однако исследователи обнаружили, что, даже когда отдельные особи начинали свое путешествие в разных районах океана, с разной высотой и азимутом движения солнца, они придерживались одного направления. В других случаях животные, начинавшие миграцию с
На протяжении десятилетий идея, гласившая, что животные ориентируются по магнитному полю Земли, отвергалась научным сообществом как лженаука. Затем, в 1958 г., молодому немецкому аспиранту поручили раз и навсегда опровергнуть эту теорию. Как отмечала историк науки Лиза Поллак, Вольфгангу Вильчко предложили воссоздать эксперимент, выполненный его коллегой, который поместил птиц в закрытое помещение, откуда не было видно ни солнца, ни звезд, но с удивлением обнаружил, что птицы не теряют способности ориентироваться. Объяснить это поведение можно было двумя способами: птицы используют магнетизм – или радиосигналы от звезд. Вильчко отдавал предпочтение гипотезе радиосигналов. Он поместил зарянок в стальную камеру, ослаблявшую магнитное поле Земли, и продержал там несколько дней, пытаясь сбить их внутренние часы. Но при проверке оказалось, что они по-прежнему прекрасно ориентируются. Когда же Вильчко менял направление магнитного поля, птицы меняли направление, в котором пытались улететь. Вильчко вместе со своей женой и коллегой, Росвитой, пришел к выводу, что зарянки, словно с помощью некоего компаса, определяют инклинацию, магнитное наклонение – угол между магнитным полем и земной поверхностью, – и выполнил десятки экспериментов, чтобы это доказать. Тем временем появились другие исследования, показавшие, что магнитное поле чувствуют также акулы, скаты, саламандры, улитки и даже пчелы. В начале 2000-х гг. ученые продемонстрировали, что магнитный компас используют еще 17 видов перелетных птиц, в том числе почтовые голуби.
Представление о том, что животные обладают биологическим компасом, который способен «читать» магнитное поле Земли, теперь превратилось в самое многообещающее объяснение навигации животных. Способностью ориентироваться в магнитном поле обладают не только виды, известные длинными маршрутами миграции, но и практически все животные, которых исследовали ученые. Карпы, плавающие в аквариумах на рыбных рынках Праги, стихийно выстраивались по оси север – юг. Точно так же поступают тритоны в минуту отдыха и собаки, когда приседают облегчиться. Лошади, коровы и олени располагают туловище в направлении север – юг, когда пасутся, – но не под линиями электропередачи, которые искажают магнитное поле. Рыжая лисица почти всегда бросается на мышь с северо-востока. Вероятно, у всех этих видов животных имеется некая органелла, которая работает как магниторецептор, реагирующий на магнитные волны подобно тому, как ухо реагирует на звук, а глаз – на свет.
По мере того как в XX в. множилось число примеров видов животных, обладающих такой способностью, магнитная теория навигации получала все большее распространение. Может ли биологический компас, использующий магнетизм, объяснить способность к навигации таких животных, как горбатые киты?