Активным физическим фактором, воздействующим на ионосферу, является электрическое поле. Процессы его генерации и явления происходящие в системе атмосфера–ионосфера активно исследуются в последнее время. Исследования, проведенные с помощью искусственных спутников Земли, выявили тепловые аномалии над зонами крупных разломов земной коры в России, Китае, США, Италии и других странах. Ученые связывают [180] аномалии в сейсмически активных зонах с генерацией внутренних гравитационных волн (ВГВ) и выходом литосферных газов в атмосферу над такими районами. Обнаружена зависимость хода максимального значения нормированной амплитуды температурных возмущений ВГВ в сейсмически активных регионах. Температура в зонах разлома повышалась за одну-две недели до толчка. Аномальный тепловой поток возникал в месте геологических разломов за 3–4 суток до события. За сутки перед землетрясением амплитуды температурных возмущений резко возрастают, падение происходит в момент землетрясения. Накануне землетрясения из литосферы интенсивно выделяются газы (СН4, СО2). Сейсмическую активность, взрывы, метеорологические проявления называют причинами возникновения ВГВ. В статье [180] не исключают возможности генерации вторичных ВГВ, которые распространяются из мезосферы и попадают в стратосферу. По мнению авторов, «сейсмогравитационные волны» оказываются более интенсивными за несколько дней до землетрясения. Вариации;температуры, наблюдаемые;над очагом будущего землетрясения, ученые интерпретируют;как индуцированные;ВГВ. Высказано суждение: ВГВ, достигнув мезосферы, могут разрушаться, что приводит к локальному нагреву и движению воздуха. Наблюдения за изменением температуры велось в диапазоне стратосферных высот от 16 до 63 км. В обосновании признаков приближения землетрясения, ученые не дают ясного физического представления причины роста температуры в коре и атмосфере, за сутки, за одну-две недели до землетрясения. Работы [179, 180] рассматривают частные случаи. Из выводов не следует, при каких сейсмических событиях наблюдаются температурные предвестники, а в каких не бывает нагрева атмосферы над зоной будущего землетрясения.
Геофизическими исследованиями, проведенными в течение последних десятилетий в различных регионах, установлено распространение сейсмических и электрических неоднородностей в земной коре. Неоднородности обнаружены в средних и нижних слоях коры. Часто наблюдается совпадение или близкое расположение волноводов и электропроводящих зон. Данные, характеризующие сейсмические и геоэлектрические неоднородности, позволяют ученым утверждать, что основная масса флюидов рождается непосредственно в консолидированной коре под действием процессов метаморфической дегидратации. Об этом свидетельствует площадное распространение неоднородностей в коре, приуроченность их к глубинным областям, в которых температурные условия способствуют развитию метаморфических реакций [182].
Возмущения характеризуются, как правило, изменениями высоты максимума слоя F2 и критических частот (максимума электронной концентрации) [183]. На отдельных записях выделяются процессы как сравнительно короткопериодные – первые десятки минут, так и более длинные периоды колебаний – от нескольких десятков минут до нескольких часов. Учеными были проанализированы 9 сейсмических событий, 8 из них с магнитудой M > 5: Турция, М = 7,7 (17.08.1999 г.); Hector Mine, Калифорния M = 7,1 (16.10.1999 г.); Центральная Калифорния, М = 6,5 (22.12.2003 г.); Калининградская обл., М = 4,8 и М = 5,0 (21.09.2004 г.), Пакистан, М = 7,6 (08.10.2005 г.), остров Хонсю, М = 6,6 (07.05.2008 г.). Значимые изменения электронной концентрации наблюдались на всех принимающих станциях, расположенных вблизи эпицентра события.
При выполнении сравнительного анализа деформографических наблюдений и ионосферных вариаций сигналов, полученных от спутников GPS, учеными выявлена корреляция волнообразных деформационно-барических колебаний земной поверхности и атмосферного давления, с регистрируемыми вариациями ПЭС. Изменения электронной концентрации наблюдается для всех станций, расположенных вблизи эпицентра события. В половине случаев отмечают волнообразные вариации с периодами 10–90 мин. Ионосфера показывает увеличение электронной концентрации за 4–5 суток с последующим значительным ее уменьшением за 1–3 суток до предстоящего землетрясения [183,184]. Появление в ионосфере «сейсмогенных вариаций перед сильными землетрясениями» в работе [185] объясняют воздействием квазистатического электрического поля, возникающего в атмосфере на поверхности земли в области подготовки сильного землетрясения.
Связь сейсмических и электромагнитных процессов в земной коре и прилегающих геосферах (атмосфере, ионосфере) советскими учеными [186] замечена давно. Результаты оригинальных экспериментов, выполненных наземным геофизическим лазерным интерферометром и спутниковым ионосферным профилометром на основе навигационной системы GPS, приведены в работе [187]. Зарегистрировано синхронное возрастание деформаций земной поверхности, вариаций атмосферного давления и уровня электронной концентрации в слое F2 ионосферы с характерными пространственными масштабами 102–103 км. Обнаружена связь явлений с сейсмической активностью Земли. Авторы отмечают, что перед сильными землетрясениями возрастает интенсивность нестационарных динамических процессов в ионосфере, усиливаются возмущения электрических и магнитных полей Земли. С применением методов, основанных на использовании спутниковых навигационных систем, в изучении связи сейсмических и ионосферных явлений был достигнут прогресс. Использование разветвленной сети спутниковых систем GPS и FORMOSAT позволило изучить ионосферные вариации в слое F2. Было установлено, что ионосферные возмущения выражаются в вариации электронной плотности ионосферы над территориями в окрестности очага будущего землетрясения. Результаты были получены в ходе инструментальных наблюдений, которые проводились оптическим и фотоэлектрическим микробарографами, 10- и 100-метровым лазерными деформографами. Модификации продолжаются от десятков часов до нескольких суток, особенно перед сильными землетрясениями [187]. Характерные периоды возмущений в пределах 5–60 мин.
Возрастание геомагнитных возмущений от уровня фоновых флуктуаций 0.1–0.2 нТл до величин 1–2 нТл с характерными периодами 15–150 мин происходит синхронно по времени с зарегистрированными волновыми возмущениями в литосфере и ионосфере Земли [187, рис. 2]. Развитие возмущений в трех геофизических средах представляет синхронное возрастание деформаций земной поверхности, вариаций атмосферного давления и уровня электронной концентрации в слое F2 ионосферы с периодами 5–10 и 20–50 мин при расстояниях между пунктами наблюдений от 100 км до 7 тыс. км соответственно. Явления предваряют и сопровождают сейсмические события регионального масштаба, а также удаленные землетрясения с магнитудами M = 7–8. Инструментальные наблюдения указывают на одновременное существование динамического возбуждения литосферы, атмосферы и ионосферы Земли, что косвенно подтверждено зарегистрированными возмущениями магнитного поля.
Физические модели, описывающие атмосферно-литосферные и сейсмоионосферные взаимодействия, до сих пор остаются дискуссионными. Авторами [187] проанализирована связь обнаруженных явлений с сейсмической активностью Земли. Ученые предполагают, что обнаруженные особенности динамического взаимодействия литосферы, атмосферы и ионосферы Земли могут быть использованы для разработки технологии раннего обнаружения предвестников землетрясений и других опасных природных явлений. Они допускают возможное воздействие техногенного происхождения и реакцию на него геосфер. Люди желают, чтобы проблема прогноза землетрясений нашла решение. Отметим данную работу как первую, связавшую синхронные модификации в трех геофизических средах, предшествующих сейсмическому событию. Представленный материал похоронил теорию, в которой землетрясение, волны цунами и ВГВ создают возмущения в атмосфере и коре земли. В статье излагают голые факты, формулируются логически обоснованные выводы, без вымыслов, присущих многим публикациям на данную тематику. При всей полноте картины происходящего, ученые не знают, что является источником возмущений в трех геосферах.
Разработаны экзотические теории причин происхождения катастрофических событий. Без достаточной аргументации в них включают погодные условия, необычные облака, фазы луны, влияние Солнца и другие факторы. Все это могло иметь место в природе. То же самое происходило и ранее, из чего не следует рост частоты катаклизмов в мире, которые увеличились за последние десятки лет в разы. Замысловатое обоснование причин и предвестников землетрясений опирается на гипотетические гравитационные волны, "открытые" группой западных ученых. Негативная тенденция должна была наводить на мысль, что процессы происходят вопреки естественным законам природы. К слову, в физике зарегистрировано достаточно большое число псевдонаучных теорий и открытий, называемых фундаментальными. Авторы научных работ, использующие ВГВ для объяснения аномалий, спешат, пока этот "поезд" не ушел, приклеиться к разрекламированной пустышке. Ученые, которые будут знать движущие силы и принципы, построения и управления движением во Вселенной, опровергнут придуманные небылицы.
Все события укладываются в рамки известных физических закономерностей, если за причину возмущений мы принимаем: ГЭЦ и электрически заряженную полярную структуру, движущуюся по силовым линиям; высоко- и низкочастотные электромагнитные колебания, действующие в электрическом контуре; силы электростатического притяжения, возникающие между корой земли и плазмоидом. Напомним, что приближение плазмоида по силовой линии к поверхности земли вызывает нагревание ионов газа и увеличивает скорость электрических зарядов в атмосфере и земной коре. Известно, что усиленное выделение тепла предшествует событию. По мере приближения плазмоида к поверхности земли практически все отрицательно заряженные частицы в атмосфере притянуты и поглощены полярной структурой. Накануне разрушения пространство в окрестностях положительно заряженной плазменной структуры очищено от заряженных частиц. Массовое движение заряженных частиц в пространстве, окружающем плазменную структуру, прекращается, как и вариации ПЭС, нагрев зоны над эпицентром. Текут только токи утечек и токи, создающие электромагнитные колебания в контуре. Взаимодействие сил полей плазмоида и Земли изменяет сложившуюся архитектуру механических напряжений в консолидированной коре.
21. Неопределенность причин техногенных землетрясений
Разработка глобальной геодинамики продолжалось более полувека. Утверждают, что к настоящему времени основы теории геодинамики построены [188]. Учение включает в себя тектонику литосферных плит, тектонику плавающих континентов и тектонику мантийных плюмов. В земной коре происходят перемещения больших объемов масс горных пород. В одних местах они поднимаются, а в других опускаются, мнутся и образуют складки. На отдельных участках происходит нарушение сплошности горных пород. Дрейф континентов на поверхности Земли проявляется в движении литосферных плит, на стыках которых происходят землетрясения и катастрофические вулканические извержения. Особенности строения земной коры, образование и формирование магматических тел рассматриваются геотектоникой. В теории тектоники литосферных плит в качестве движущего механизма задействована мантийная конвекция. Природа конвекции понимается неоднозначно: одни – считают ее чисто тепловой, другие – настаивают на термохимической природе. Неизвестно, она общая или проявляется раздельно в верхней и нижней мантии (выше или ниже 660 км). Большинство геофизиков оказались сторонниками мантийной конвекции, а геохимики – двухъярусной конвекции. Геохимики объясняют свою позицию тем, что состав магм, в особенности океанских островов, требует существования в глубинах резервуара, сохранившего состав мантии со времени аккреции планеты. Сейсмотомографией выявляют под активными плюмами наличие вертикальных столбов и наклонных зон разуплотненного вещества мантии, простирающихся на большие глубины, часто превышающие сотни километров и достигающих в ряде случаев границ верхней, нижней мантии или границы ядро-мантия [189].
Выдвинута гипотеза, что все вещество мантии приводят в циркуляционное движение холодные конвективные потоки (в виде погружающихся литосферных плит), а также горячие конвективные потоки (в виде поднимающихся мантийных плюмов). Сейчас геофизики предполагают, что такая область располагается в нижней части мантии (ниже 1300–1700 км) [190]. Растет количество публикаций, в которых критикуют представления о том, что плюмы рождаются на границе ядро-мантия, что они имеют широкую головную часть и сопровождаются поднятием земной поверхности. Известный американский геофизик Д. Андерсон высказал сомнение в реальности существования плюмов. Данные сейсмической томографии указывают на такие свойства мантийного вещества, которые температурными условиями объяснить нельзя. В мантии обнаружили чередование разогретых и охлажденных участков. На основании сейсмотомографических исследований в начале 90-х годов ХХ века были установлены глубинные зоны пониженных скоростей сейсмических волн. Зона шириной несколько сотен километров на глубинах 250–400 км простирается от Балтийского моря до Малой Азии и, возможно, далее [191]. Непосредственно над ней располагается расплавленная магма (астенолиты), характеризующаяся снижением сейсмических скоростей и повышенной электропроводностью.
Флюидные системы, заключенные в коре континентов, объединяют участки различных размеров и конфигураций, в которых порово-трещинное пространство и межзерновые промежутки пород заполнены флюидами. Они различаются по своему составу и происхождению. Выделение флюидов в среднем и нижнем слое кристаллических пород континентов связывают с метаморфическими реакциями дегидратации. Вода и углекислота являются основными компонентами летучих элементов. Источниками выделения воды и углекислоты являются процессы окисления восстановленных флюидов. Флюиды, содержащие Н2, СО, СН4, окисляются по мере поступления в верхние части мантии и в земную кору [192]:
Н2 → Н2О, СО → СО2, СН4 → СО + 2Н2 и др.
Участие флюидов, поступающих из глубинных оболочек Земли, в формировании флюидного режима земной коры однозначно не определено. Флюид – это газовое или жидкое вещество, отличающееся от горных пород или силикатных магм более низкими значениями плотности (до 1,5 г/см3) и вязкости (до 10 пуаз). В составе флюидов преобладает вода с растворенными веществами. По мнению одних ученых, флюид состоит главным образом из гидротермальной фазы, содержащей СО2 и другие газовые компоненты. Другие рассматривают флюиды как продукты глубинной дегазации, представляющие собой водную, водно-газовую, паровую или газовую среду, заключенную в массе горных пород литосферы.
При исследовании распределения землетрясений вблизи Японских островов по данным каталога Японского Метеорологического Агентства (JMA) за 1983–1990 гг. было обнаружено расположение гипоцентров в компактном объеме пространства, в интервале глубин 0-90 км [193]. Массив данных был создан, главным образом, из очагов слабых землетрясений. Скопления ориентированных отвесно очагов землетрясений, называют сейсмическими "гвоздями". Проявления сейсмических гвоздей наблюдались на Камчатке, Аляске, в районах срединно-океанических хребтов (Исландия), в континентальных зонах (Восточно–Африканский рифт, Памир, зона Вранча) и в других районах литосферы. Протяженность "гвоздя" по вертикали от 10 до 50 км, глубина образования не превосходит 90 км. Проекция "гвоздя" на горизонтальную плоскость имеет размер 5–10 км в диаметре. Прямой корреляции "гвоздя" с сильными землетрясениями (MJMA > 5,0) и с современным активным вулканизмом не наблюдается. Продолжительность формирования "гвоздя" от нескольких дней до месяца. Высказано предположение, что флюиды в литосфере – источник образования "гвоздей".
В консолидированной земной коре континентов широко распространены субгоризонтальные флюидные системы, которые характеризуются как электропроводящие и низкоскоростные (волноводные) зоны. Эти системы расположены в средних и нижних частях коры. Наиболее крупные электропроводящие тела имеют субгоризонтальное простирание и значительную протяженность, мощность электропроводящих слоев достигает 10-15 км. Неоднородности существуют в средних и нижних горизонтах коры, на глубинах 20-35 км. Формирование и длительный период сохранения таких систем плохо согласуется с тенденциями развития земной коры [182].
По результатам магнитотеллурического зондирования в регионе Киргизского Тянь-Шаня был выделен проводящий слой, мощность которого составляет 15-25 км. В разрезе земной коры электропроводящие и низкоскоростные слои занимают довольно близкое положение. Ученые уверены в существовании связи между неоднородностями в земной коре и флюидами. В работе [192] утверждается, что подземные воды реагируют на изменение напряженно-деформированного состояния среды в период подготовки землетрясения и после его происшествия. Подземные воды рассматривают как постоянного участника экзогенных и эндогенных процессов формирования рудных, нефтяных и газовых месторождений. При подготовке землетрясений проницаемость трещин изменяется в квадратичной зависимости, что определяет существенные изменения показателей флюидов. Фильтрационное поле земной коры существенно изменяется в процессе подготовки землетрясения, эффекты выражены значительной амплитудой. Примером служит уникальное снижение уровня подземных вод (на 57 м) в пределах Главного Копетдагского разлома перед землетрясением с
Объективно оценить неочевидное явление ученому мешает ряд трудностей: а) малая доступность флюидного режима для наблюдений в очаговых зонах и глубоких горизонтах областью подготовки землетрясения; b) слабая изученность фильтрационного поля земной коры в очаговых зонах; с) недостаточность теоретического обоснования резкого нарастания активности флюидов в короткие сроки. В прогнозах и предвестниках землетрясений достаточно часто следствие выдают за причину.
В подземной гидросфере выделяют зоны гидростатических, переходных и литостатических давлений флюидов, меняющиеся с глубиной. Граница между первой и второй зонами расположена на глубинах от 1 до 6 км, на глубинах 5-10 км находится вторая зона. Поверхностные воды, (метеорного) или морского происхождения, вовлекаются в фильтрационные процессы. Нисходящая миграция флюидов происходит в зонах субдукции, областях прогиба горных пород, а также в случаях, когда осадочные слои расположены под породами кристаллического фундамента. При этом областями разгрузки являются глубинные горизонты земной коры, где в породах сохраняются электропроводящие трещины. Проникновение флюидов на значительную глубину возможно при высокой проницаемости пород (≥ 10–3 мД) посредством фильтрации или гравитационной конвекции [192]. Поступление флюидов в глубинные зоны земной коры может происходить тремя путями: сверху, с дневной поверхности или приповерхностных горизонтов; снизу, из верхней мантии, а также при генерации флюидов внутри коры, в пределах данных зон. Появление метеорных вод на больших глубинах связывают с механизмом сейсмического нагнетания. По мнению ученых, перед сейсмическим разрывом под действием высоких механических напряжений идет развитие микротрещин. Трещины раскрываются, что вызывает затягивание по ним воды, давление флюидов падает. После разрыва микротрещины закрываются и выжимают воду, что приводит к сильному повышению дебита источников. Представление о преобладающем росте дебита источников не соответствуют натурным данным. В работе [192] отмечают, что изменение давления (уровня) и дебита подземных вод после землетрясений имеют разные знаки.