Книги

Танец жизни. Новая наука о том, как клетка становится человеком

22
18
20
22
24
26
28
30

Во время перерыва в наших исследованиях развития четырехклеточных эмбрионов и до того, как мы занялись изучением молекулярных свойств отдельных клеток, я переключила интерес своей команды на более поздние стадии развития — те, что всегда были покрыты мраком тайны из-за невозможности наблюдать и экспериментировать с имплантированными эмбрионами, так называемым черным ящиком онтогенеза млекопитающих.

Раз мы затеяли эту научную авантюру, единственный способ отследить клеточную судьбу состоял в том, чтобы имплантировать приемной самке эмбрион с клеткой, помеченной GFP, а через несколько дней извлечь его и посмотреть, где окажутся потомки промаркированной клетки. Продолжает ли первый акт нарушения симметрии воздействовать на развитие эмбриона после имплантации, как предполагало исследование Кевина Эггана? Или вся память об этом событии стирается при создании плана тела?

Решением этого вопроса я занималась в середине 1990-х, однако в процессе интенсивного роста эмбриона после имплантации маркеры в большинстве случаев не сохранялись. Чтобы получить достаточное количество информации, эксперименты приходилось повторять снова и снова. Мне не хотелось возвращаться к этому расточительному методу. Более того, для понимания процесса важно непосредственное наблюдение, которое невозможно, когда эмбрион спрятан в теле матери.

Но если бы нам удалось это проследить, мы смогли бы понять, почему некоторые эмбрионы процветают, несмотря на клетки с аномальным набором хромосом. В том, что касается Саймона и обнаружения аномалий в пробах ворсинок хориона (CVS), взятых с соединяющей нас плаценты, в ходе экспериментов я могла бы найти им объяснение. Для изучения этой стадии развития надо было придумать такой способ, который позволил бы эмбрионам развиваться в лабораторных условиях дольше, чем когда-либо, в течение того периода, который они обычно проводят в теле матери.

Глава 6

Вскрытие черного ящика

Читая лекции, Скотт Фрейзер любит озадачить свою аудиторию следующим вопросом: насколько легко разгадать правила игры, которую никогда не видел и в которую никогда не играл? Чтобы проиллюстрировать сложность проблемы, он показывает фотоснимки игры в американский футбол — серию картинок с изображением всяких хадлов, тэклов, скрамов и, для пущей драматичности, пирамиды из черлидерш. Последовательно рассматривая варианты человеческих поз, трудно понять суть игры в целом [1].

По словам моего друга Скотта, отснявшего замечательные кадры развития эмбриона и в настоящее время являющегося директором по научным проектам в Университете Южной Калифорнии в Лос-Анджелесе, есть много способов заполнить пробелы в понимании того, что происходит при столкновении двух футбольных команд. Так много, что трудно установить взаимосвязь последовательностей формаций и гарантировать верное объяснение. Аналогично, когда клеточные игроки эмбриональной команды сталкиваются с игроками материнской, тяжело разобраться в том, что произошло в интервале между одним снимком нагромождения клеток и другим. Это если вы вообще делали хоть какие-то снимки. Разумеется, выходом является непрерывная съемка эмбрионального развития, вроде той, что мы выполняли для более «молодых», преимплантационных эмбрионов. Из всех пробелов в понимании человеческого онтогенеза момент имплантации эмбриона в матку является одним из самых загадочных и одновременно критически важных.

Может показаться, что изучение таких эмбрионов — обычная практика, ведь имплантация происходит на второй неделе развития, и ученые в Великобритании могут легально культивировать эмбрионы в течение двух недель, вписывающихся в четырнадцатидневный лимит [2].

Однако практика выращивания человеческих эмбрионов в культуре ограничивалась шестью днями. Был случай, когда эмбрион с помощью клеток матки культивировался девять дней, но здоровье полученного таким способом эмбриона осталось под вопросом [3]. События человеческого развития от стадии бластоцисты на шестой день до стадии гаструляции были скрыты от наших глаз.

До имплантации эмбрион (мышиный или человеческий) представляет собой маленький дрейфующий шарик из клеток — бластоцисту, сопоставимую по размерам с исходной яйцеклеткой. Когда количество клеток в мышиной бластоцисте достигает одной сотни, zona pellucida разрывается и выпускает эмбрион, чтобы тот мог имплантироваться в стенку матки и начать расти.

К моменту «вылупления» внутри эмбриона образуется полость. Теперь бластоциста — это шарик из клеток, наполненный жидкостью. Если заглянуть внутрь этого полого шарика, можно увидеть скопление клеток — эпибласт. Именно из этого скопления вырастает индивидуум. Эти клетки являются предками каждой клетки организма. Окружающие клетки делятся на два типа. С одной стороны расположена примитивная энтодерма, из которой в свое время сформируется желточный мешок. С другой стороны эпибласта находится трофэктодерма, которая предоставит эмбриону систему жизнеобеспечения и построит ему дом внутри матери. Клетки трофэктодермы непосредственно принимают участие в критическом этапе развития, когда бластоциста внедряется в стенку матки.

Разноцветное изображение бластоцисты предваряет большинство моих современных лекций. Перед ней я рисую один большой вопросительный знак, а после нее рисую второй, еще больше. Это и есть два главных вопроса, направляющих работу моей лаборатории. Во-первых, каким образом появляются эти три типа клеток? Во-вторых, каким образом эти три типа клеток взаимодействуют друг с другом, чтобы создать нечто столь сложное, как мы с вами?

До стадии бластоцисты эмбрион легко развивается в культуре, чего не скажешь об эмбрионе в момент имплантации. Когда мы проводили трудоемкие эксперименты (помечали индивидуальные клетки бластоцисты, переносили их в приемную самку, а затем извлекали эмбрион после имплантации, чтобы отследить клеточных потомков), все, что мы получали в итоге, было серией фотоснимков. Являлось ли это воспроизведением процесса развития или, подобно трейлерам, вводящим зрителя в заблуждение, не отображало множество ключевых событий? Можно ли найти способ изучения эмбриона вне укрывающей его матки, чтобы проследить, заснять и задокументировать каждый шаг его развития?

Незнание того, как развивается эмбрион во время имплантации и вскоре после нее, тормозило нас по многим направлениям. Раскрытие тайн этого периода развития принесло бы много практической пользы. Оно повысило бы успешность ЭКО и расширило наши знания о том, как стволовые клетки распадаются на разные клеточные линии. Это могло бы улучшить их применение в регенеративной медицине (обсуждаемой в главе 10), где разрабатываются способы выращивания замещающих клеток, тканей и даже органов.

Кроме того, это тот самый период развития, когда многие беременности подходят к концу, при этом женщины о них даже не подозревают [4]. Природа расточительна или, возможно, предусмотрительна, поскольку эмбрион чаще всего отторгается в случае своей неисправности. Около 30% ранних беременностей заканчиваются неудачей раньше, чем эмбрион имплантируется в теле матери, а другие 30% — примерно в момент имплантации. И именно в это время возникает большинство дефектов. Некоторые из них детальны, другие могут привести к таким аномалиям, как сиамские близнецы.

Должна признать, мною двигал и старейший из всех научных мотивов: я хотела достичь фундаментального понимания ключевой главы истории человеческой жизни, поскольку именно тогда эмбрион приступает к росту и начинает определять план всего организма.

Мое любопытство также подогревалось желанием понять, почему некоторые несовершенные эмбрионы могут развиваться в нормального ребенка. Я не знала причину аномальных результатов моего анализа, но я хотела понять лежащую в их основе науку. Для этого требовалось исследовать эмбрион дольше, чем было возможно в то время, причем не только мышиный, но и человеческий, потому что после имплантации их развитие не одинаково.

Всего за два дня человеческий эмбрион превращается из относительно примитивного шарика клеток в более сложную дискообразную структуру, которая к десятому дню становится примерно в пять раз больше. На этом этапе архитектура эмбрионов мыши и человека удивительно сильно различается, причем мышиный формирует чашеобразную, а не дисковидную структуру, которая позже (примерно на пятый день) становится цилиндром из трех типов стволовых клеток. Из них первый тип, эпибласт, формирует эмбрион путем гаструляции, при которой клетки (прежде чем решить, превратиться им в мозг, кишечник, кости и др.) мигрируют и реорганизуются в формацию, являющуюся предшественником плана тела. Мышиный эмбрион приступает к гаструляции между шестым и седьмым днями. Человеческий — на четырнадцатый день.

Когда я впервые завела разговор о возможности культивирования эмбрионов после стадии бластоцисты, мои наставники и коллеги были обескуражены. Они сказали, что это слишком сложно и любые отчеты о том, что этот подвиг реален, будет трудно воспроизвести. Я откопала несколько старых статей с описанием культивирования эмбрионов путем имплантации, но в них было мало информации о том, как эмбрион трансформируется из пре- в постимплантационную структуру. Это и в самом деле могло оказаться пустой тратой времени, ведь для того, чтобы начать расти и правильным образом перестраивать свою структуру, эмбриону могло понадобиться взаимодействие с эндометрием.