Таким образом, из семи добравшихся до Марса советских автоматических межпланетных станций в историю космических побед вошел только «Марс-3», чей посадочный аппарат совершил первую в мире мягкую посадку на поверхность Красной планеты, но даже ему не удалось выполнить все намеченные задачи полностью.
А ведь были и еще неудачные запуски. После того как в 1961 году АМС «Венера-1» испытала серьезные трудности, было решено запускать межпланетные аппараты в связках. В таких случаях несколько станций (две, три или даже, как было описано выше, четыре) стартовали с интервалом в несколько дней и страховали друг друга на случай отказа систем одной из них. Запуск «Марса-1» состоялся в ноябре 1962 года, и на тот момент уже считалось «дурным тоном» отправлять станции в такие далекие путешествия в одиночку. Как же получилось, что к Марсу он подошел один, без товарищей?
На самом деле программа предполагала работу связки из трех аппаратов. Запуски поочередно состоялись 24 октября, 1 ноября и 4 ноября 1962 года. Лишь запущенный 1 ноября добрался до Марса и теперь известен нам как «Марс-1», остальные два потерпели аварии. Старт 24 октября закончился взрывом последней ступени ракеты-носителя, вследствие чего космический аппарат не смог покинуть околоземную орбиту. Похожая история приключилась и 4 ноября, но тогда обошлось без взрыва, а лишь преждевременно выключился разгонный двигатель. Причиной этого послужила недостаточная устойчивость оборудования второй ступени ракеты-носителя к вибрациям. Данный случай отлично демонстрирует, что при отправке космических аппаратов далеко от Земли на любом этапе, даже на старте, могут возникнуть серьезные проблемы, и наличие дублирующих станций оправдано.
В окно 1971 года до Марса не смог добраться еще один космический аппарат, получивший название «Космос-419». 10 мая того года он был успешно выведен на околоземную орбиту, но так там и остался из-за ошибки программиста. Аппарат должен был совершить один виток по околоземной орбите (это занимает 1,5 часа), а затем должен был включиться двигатель разгонного «Блока Д» для выхода на трассу к Марсу. Ошибка, допущенная в программном коде, впоследствии характеризовалась как «самая грубая и непростительная». Таймер для запуска двигателя оказался установленным не на полтора, а на 150 часов. Без своевременного запуска двигателя «Космос-419» остался на околоземной орбите, где провел двое суток, после чего 12 мая вошел в земную атмосферу и сгорел в ее плотных слоях.
Так сложилось, что Марс и Венера оказались диаметрально противоположными объектами исследований двух сверхдержав. В СССР после нескольких не самых удачных запусков космических аппаратов к Марсу было решено оставить попытки. Венера и до, и во время, и после запусков в рамках советской марсианской программы представляла больший интерес, чем Красная планета. Настойчивость в изучении Венеры советскими аппаратами была отражена в прозвище «Русская планета», которое она получила в международном сообществе. В США дела обстояли ровно наоборот. Несколько скромных попыток подобраться к Венере не вдохновили на дальнейшие запуски американских исследователей, и они решили сосредоточиться на Марсе.
Чем больше производится запусков космических аппаратов, тем выше вероятность, что что-то пойдет не так. Это правило применимо и к американской марсианской программе. Исследования Красной планеты в США начались, как уже говорилось, с аппаратов серии «Маринер». Первым стал пролетевший мимо Марса «Маринер-4» в 1964 году. Его «коллеги» «Маринер-6» и «Маринер-7» совершили свои пролеты в 1969 году, а в 1971–1972 годах на околомарсианской орбите работал «Маринер-9». Именно этот космический аппарат обнаружил огромную сеть каньонов на поверхности Красной планеты. В названии системы каньонов увековечена исследовательская программа США – они именуются долины Маринер, или долины Маринера.
Успех орбитальных миссий хотелось подкрепить посадкой. Логическим продолжением «Маринеров» становится «Викинг». Американские инженеры тоже решили отправить к Марсу связку из двух космических аппаратов. Два «Викинга» стартовали 20 августа и 9 сентября 1975 года соответственно. Оба были оснащены посадочными и орбитальными аппаратами, оба благополучно добрались до Марса. Миссия оказалось очень успешной: мягкая посадка обоих аппаратов состоялась, почти все научное оборудование получило больше данных, чем планировалось, и проработали они гораздо дольше намеченного срока. 15 ноября 1976 года связь в соответствии с планом полета отключается – 26 ноября грядет противостояние Марса. Это положение, в котором Марс и Земля оказываются с противоположных сторон своих орбит относительно Солнца, и данная конфигурация не позволяет поддерживать радиосвязь. В середине декабря 1976 года связь возобновляется, и после этого «Викинги» работают еще несколько лет. Первым отключается орбитальный аппарат «Викинга-2» (июль 1978 года). Последняя передача данных в рамках этого проекта осуществляется в ноябре 1982 года с посадочного аппарата «Викинга-1». После этого инженеры еще полгода пытались возобновить контакт с ним, но в мае 1983 года было объявлено об официальном завершении миссии.
Грандиозный успех не был бы возможным без обнаружения и анализа ошибок, которые могли бы помешать работе. Например, оба посадочных аппарата сели не там, где планировалось изначально. Съемки с околомарсианской орбиты показали, что выбранные заранее места посадок недостаточно безопасны и грозят аппаратам быстрым выходом из строя. Посадки были осуществлены позже запланированных сроков, но в другие, признанные более безопасными районы.
«Викинги» преподнесли сюрприз, подобный тому, с которым столкнулись исследователи Венеры: цвет неба оказался не таким, как ожидалось. По предположениям астрономов считалось, что над камерой зонда будет наблюдаться синяя атмосфера. Дело в том, что цвет неба зависит от толщины слоя атмосферы, через который проходит свет. Разные цвета в среде рассеиваются по-разному. Цвета – это электромагнитные волны разной длины. Сильнее всего рассеивается фиолетовый свет, так как у него самая короткая длина волны. Затем идут цвета по порядку как в радуге – синий, голубой, зеленый, желтый, оранжевый, красный. На Земле днем, когда солнечный свет проходит примерно через 100 км плотной атмосферы, фиолетовое излучение рассеивается на больших высотах и до наблюдателя на поверхности не доходит. Синий также почти не доходит, но немного подкрашивает небо. Темно-синим как раз видят небо пилоты самолетов. Голубой рассеивается у поверхности планеты, и он в основном дает оттенок атмосфере. Зеленый свет проходит сквозь стокилометровую толщу, почти не взаимодействуя с частицами воздуха, и вносит вклад в оттенок неба только слегка. Остальные цвета рассеяться не успевают. В итоге мы имеем голубой цвет с примесями зеленого и синего, которые вместе также дают голубой цвет. Во время заката или восхода солнечному свету нужно проходить по касательной через более толстый слой воздуха (к тому же более плотный у поверхности). Почти все цвета рассеиваются, не дойдя до наблюдателя, только красный и оранжевый создают впечатляющие виды заходящего Солнца, хотя это кажется не совсем логичным. Солнце движется по небу к горизонту равномерно, и у поверхности сильнее всех цветов должен рассеиваться зеленый. Однако зеленое небо никто не наблюдал. Дело в том, что цвет атмосферы – это всегда смесь цветов. К зеленому примешиваются и желтый, и голубой. В итоге небо становится светло-желтым, почти белым, но не зеленым.
На Марсе атмосфера тоньше и менее плотная. Рассеивание должно быть меньше, чем на Земле. Значения давления и плотности у поверхности планеты соответствуют высоте 15–20 км над уровнем моря на Земле. То есть небо там должно быть синим, когда Солнце в зените. Примерные расчеты указывали, что во время восходов и закатов цвет должен смениться на белый. Первые фото «Викинга» показали, что атмосфера Марса красная. Этот цвет дает пыль, которая поднимается воздушными потоками с поверхности и повсюду разлетается. Она представляет собой оксиды железа, а они как раз красного цвета. На закате небо оказалось голубым. Так получилось, потому что радиус Марса в два раза меньше радиуса Земли, так что свету по касательной нужно было пройти меньшее расстояние, чем на Земле.
Важно отметить, что подобного рода ошибки в суждениях и предположениях – естественная часть процесса познания. Выдвигается гипотеза, которую следует проверить экспериментально. Зачастую эксперименты показывают, что теоретики ошибались в своих изначальных предположениях. В этом нет ничего страшного, наоборот, так множится научное знание. Абсолютно все идеи о том, как что-либо работает, просто не могут оказаться верными. В этом и есть главная задача науки – отсеивать ложные идеи, оставляя нас с новыми, проверенными экспериментально, точными знаниями.
Неверные суждения иногда высказываются не только на этапе выдвижения гипотез, но и после получения практических данных. Так вышло с фотографиями, сделанными орбитальным аппаратом «Викинга-1». 25 июля 1976 года снимки были опубликованы NASA и вызвали широкий резонанс: космический аппарат заснял с орбиты огромное человеческое лицо на поверхности Марса! Взбудораженная общественность тут же начала выдвигать предположения, что на Красной планете есть разумная цивилизация или по крайней мере существовала тысячелетия назад, а к наступлению ХХ века на Земле обитатели Марса уже вымерли. По мере усовершенствования технологий стало ясно, что всему виной богатое воображение и парейдолия. О ней мы уже говорили в главе «Венера». Напомним: это свойство человеческого мозга достраивать имеющееся изображение до знакомых образов, которые человек где-то видел ранее. Снимки, полученные «Викингом-1», были хорошего, но все же не высочайшего разрешения. Во взаимном расположении скал и их теней люди стремились разглядеть что-то знакомое, в необычных очертаниях им виделось лицо египетского сфинкса. Множественные последующие экспедиции космических аппаратов, оснащенных более совершенной фототехникой, показали, что «Сфинкс» – лишь иллюзия. Научная аппаратура «Викингов» на животрепещущий вопрос «Есть ли жизнь на Марсе?» уверенно и однозначно ответила: «Нет». Первые достаточно четкие кадры этого региона, окончательно развеявшие фантастические теории о марсианской цивилизации, получил Mars Global Surveyor только в 2001 году.
Лицо на Марсе под разными углами.
Успех «Викингов» по логике вещей должен был подхлестнуть интерес к изучению Марса, однако по завершении их программы приоритеты в США меняются. На передний план выходит программа Space Shuttle, на которую тратится львиная доля ресурсов, предназначенных для американской космической программы. Марсианские исследовательские аппараты в США начинают вновь стартовать только в 1990-х, и здесь не обходится без ряда серьезных проблем.
25 сентября 1992 года с космодрома на мысе Канаверал был запущен Mars Observer, первый после «Викингов» американский марсианский космический аппарат. 24 августа 1993 года он должен был выйти на околомарсианскую орбиту. Миссия шла по плану до 21 августа 1993 года, когда Mars Observer перестал выходить на связь. Аппарат был потерян, и триумфального возвращения американцев на Марс не получилось. В ходе расследования причин аварии выдвигалось множество гипотез. Самым вероятным вариантом посчитали разрыв топливопровода, в результате чего произошла утечка гелия и горючего монометилгидразина во время наддува – это процедура, когда гелий увеличивает давление внутри топливного бака для проталкивания топлива в двигатель. Утечка создала реактивную силу, за счет которой аппарат начал неконтролируемо вращаться, а «сбежавшее» токсичное горючее вполне могло повредить электрические контакты. Радиопередатчик в нужный момент просто не включился – либо в результате физического повреждения электрической схемы, либо в связи с нарушением логики работы программы из-за вращения аппарата. Несмотря ни на что, опыт Mars Observer помог в планировании последующих американских марсианских миссий, ведь этап межпланетного полета космический аппарат провел безукоризненно.
Между тем постсоветская Россия тоже предпринимает попытку отправить станцию на Марс. 16 ноября 1996 года стартует «Марс-96». Изначально проект назывался «Марс-94», так как аппарат планировался к запуску в 1994 году, однако старт перенесли и сменили название. На борту российской станции находилось научное оборудование Франции, Германии, Италии, США, Финляндии, Великобритании, Австрии, Болгарии, Бельгии и Италии. «Марс-96» провел в полете около пяти часов. Разгонный «Блок Д» ракеты-носителя успешно вывел аппарат на околоземную орбиту. По плану «Блок Д» должен был включиться повторно, после чего «Марс-96» отделился бы и силами собственного разгонного блока «Фрегат» набрал достаточную скорость для выхода на трассу полета к Марсу. Либо повторного зажигания не произошло вообще, либо «Блок Д» включился лишь на 20 секунд. Космический аппарат в любом случае решил, что пора отделяться, но без должного разгонного «пинка» сил «Фрегата» не хватало для набора нужной скорости. Станция осталась на околоземной орбите с перигеем всего лишь 87 км (это означает, что высота аппарата над Землей в точке максимального сближения с планетой составляет 87 км). «Марс-96» был обречен. В ночь с 17 на 18 ноября 1996 года обломки станции упали в южной части Тихого океана.
Возможно, проблему можно было решить, если бы удалось быстро ее обнаружить – всегда есть возможность при помощи радиосигнала отправить на околоземную орбиту прямую команду. Сложность заключалась в том, что описанные выше трудности «Блока Д» имели место в области, которую с советских земных пунктов слежения попросту не было видно. Обычно для лучшего контроля запуска в Тихий океан выводились специальные корабли измерительного комплекса. Они брали на себя слежение и контроль запуска в те моменты, когда наземные комплексы на территории СССР не могли напрямую видеть ракету или космический аппарат. Из-за тяжелой экономической обстановки в 90-е годы не было возможности вывести такие суда в океан для контроля запуска «Марса-96». Сложное положение страны сказалось на этой миссии еще на этапе создания, по сути, все делалось на чистом энтузиазме, и в итоге, по словам академика М. Я. Марова, «моральный ущерб от аварии был не меньше финансовых потерь».
Вернемся к марсианской программе США. С середины 70-х идет активный процесс развития информационных технологий. В том числе это касается бортовых компьютеров космических станций и их программного обеспечения. Поскольку Марс далеко, а порой еще и Солнце оказывается между нашей и Красной планетами и мешает передаче сигнала, отдавать космическим аппаратам прямые команды с Земли по одной неудобно и неэффективно. Новые технологии позволили прописать в программном коде сразу все задачи полета. Космический аппарат должен был автономно их решать и отправлять на Землю полученные данные. Казалось бы, идеальное решение проблемы, однако при реализации такой концепции не сразу все было гладко.
Запущенный к Марсу в 1997 году космический аппарат Pathfinder столкнулся с неожиданной проблемой. В бортовой компьютер аппарата были заранее внесены последовательности команд для решения различных задач. Проблема заключалась в том, что для этих заданий не был четко прописан приоритет их выполнения. В итоге, уже оказавшись на Марсе, космический аппарат не знает, чем ему заняться в первую очередь, и начинает прокрастинировать – совсем как человек. Прокрастинация встречается не только среди людей, но характерна и для животного мира. Если перед живым существом стоит несколько одинаково важных задач, оно невольно стремится отвлечься от них всех и заняться чем-то совершенно посторонним. Конечно, Pathfinder свободой воли не обладал и мог делать только то, что было предписано программой, точнее, несколькими программами, предназначенными для решения разных задач. Получилось так, что аппарату приходилось тратить вычислительные мощности на решение, чем же сейчас заняться, а уже после принятия такого решения и некоторого времени работы по конкретной задаче он «передумывал» и переходил к выполнению другой программы, временно забросив предыдущую. Впоследствии в программный код марсианских аппаратов стали закладывать более четкие и структурированные алгоритмы выполнения работ с различными целями.
Космический аппарат, запущенный в 1998 году США в рамках программы Mars Surveyor Program, состоял из посадочного Mars Polar Lander (MPL), предназначенного для посадки в приполярной области Красной планеты, и орбитального Mars Climate Orbiter (МСО) для изучения марсианской погоды. Эта миссия провалилась полностью.