Книга вторая заключает учение об определении положений равновесия отрезка параболоида вращения и заключает десять предложений. Чтобы дать понятие об этом труднейшем для изучения из всех сочинений Архимеда, я приведу некоторые из этих предложений.
Во второй книге – одиннадцать предложений, в которых показываются возможные положения устойчивого равновесия такого сегмента параболоида вращения, у которого основание перпендикулярно к оси параболоида, при разных отношениях как плотности параболоида к плотности жидкости, так и высоты его к параметру производящей параболы.
При этом рассмотрение Архимеда исчерпывающее, т. е. он устанавливает точные границы для сказанных отношений, при которых параболоид будет плавать, находясь в равновесии, имея свою ось вертикальной, основание вверх или вниз, и точные границы для тех случаев, когда параболоид плавает не в прямом, а в наклонном положении на некоторый угол, и на какой именно.
Надо помнить, что все геометрические понятия, начиная от площади круга, площади параболы, объема цилиндра, шара, шарового сегмента, учения о центре тяжести тел, о их равновесии – все это создано самим Архимедом; тогда явится лишь малое представление о необыкновенной мощи его гения и о нелепости повторяемой историками, с легких слов Плутарха, басни, что Архимед, сидя в ванне в общественных банях, нашел свой закон и, выскочив из ванны голый, побежал домой по улицам сиракузским с криком «эврика, эврика!» (я нашел, я нашел!).
4. Несмотря на всю простоту и общность, закон Архимеда долго не находил применения в практике судостроения. Именно, протекло 1900 лет до того времени, когда в 1666 г. английский судостроитель Антони Дин, к удивлению короля и его свиты, при постройке корабля «Ruppert» предсказал его углубление ранее спуска на воду и прорезал пушечные порта, когда корабль был еще на стапеле. Став в 1684 г. серваером английского флота, т. е. инспектором кораблестроения, он сделал распоряжение для всех типов тогдашних кораблей о взвешивании всех частей их корпуса, а также и всех грузов, входящих в его оснастку, снабжение, боевое вооружение и пр.
Надо вспомнить, что в последнюю четверть XVII в. произошло необыкновенное развитие математических наук. В Англии это было время самого расцвета гения Исаака Ньютона, почитаемого равным Архимеду. Как раз в мае 1686 г. появилось в свет его сочинение «Математические начала натуральной философии», которое знаменитым математиком Лагранжем названо «величайшим произведением человеческого ума». На континенте в это время работали Лейбниц и его ученики братья Бернулли, развивая изобретенное, независимо один от другого, Ньютоном и Лейбницем исчисление бесконечно малых, дававшее возможность по общим простым правилам решать аналитически те задачи, которые с величайшим трудом поддавались синтезу древних. Сколь это ни странно, жители гористой Швейцарии Ив. Бернулли и его ученик Леонард Эйлер первые начали прилагать «новую математику» к решению вопросов, касающихся корабля.
В 1727 г., тогда двадцатилетний, Эйлер стал членом нашей Академии наук и оставался им до самой своей смерти в 1783 г. Одно время (в 1733 г.) возникло опасение, что Петербургская Академия будет упразднена, тогда Эйлер, по предложению графа Сиверса, в то время главного начальника русского флота, имел в виду поступить во флот лейтенантом. Почти в то же время из Парижа астрономы Бугер, Кондамин и Годен были командированы французским правительством в тогдашнее Перу, ныне Эквадор, произвести измерение длины одного градуса дуги меридиана. Бугер пробыл в Перу почти 10 лет. Дальнее плавание на тогдашних парусных судах дало ему возможность ознакомиться с морем и с кораблем.
Ясное дело, что Эйлер, едва не попавший на службу во флот, интересовался кораблем и его постройкою и, так как все судостроение тогда сосредоточивалось в Петербурге, имел к тому полную возможность. Как бы то ни было, в 1745 г. появилось в Париже сочинение Бугера «Theorie du Navire», а в 1749 г. вышло в Петербурге присланное Эйлером из Берлина за несколько лет перед тем сочинение «Scientia Navalis», в двух громадных томах in 4°.
Оба сочинения, написанные почти одновременно, одно – в Перу, другое – в Берлине, оказались по методу изучения вопросов и по результатам весьма близкими между собою. В них вполне устанавливается в применении именно к кораблю учение о плавучести, остойчивости и ее измерении, вводится понятие о метацентре, развивается данное еще Ньютоном учение о сопротивлении жидкостей в применении к кораблю и к действию ветра на паруса и решается целый ряд других вопросов, относящихся к кораблю и его мореходным качествам.