Книги

Жизнь и идеи Бруно Понтекорво

22
18
20
22
24
26
28
30

«В 1946 г. мне стало ясно, что создание ядерных реакторов коренным образом меняет положение о поисках нейтрино. В то время сцинтилляционные счетчики еще не были изобретены, и я предложил радиохимический метод регистрации нейтрино, который в настоящее время используется для регистрации солнечных нейтрино. Теперь я хотел бы заметить, что долго еще после моего предложения отношение общественного научного мнения к возможному детектированию нейтрино не изменялось (даже после того, как я сконструировал крайне низкофоновый счетчик с большим коэффициентом усиления для регистрации редких событий распада 37Ar). Отчетливо помню, что, когда я в 1949 г. говорил с Энрико Ферми, он очень интересовался рассматриваемыми мною как побочный результат попытки создания нейтринного детектора методическими аспектами счетчиков и исследованиями на них L-захвата 37Ar и спектра трития, но оставался довольно равнодушным к проблеме нейтринного детектора».

То есть для Ферми задача на Нобелевскую премию – обнаружить нейтрино, интереса не представляла, настолько он считал ее невыполнимой. Вот низкофоновые счетчики, которые сделал Бруно, – это совсем другое дело. Эмилио Сегре очень точно охарактеризовал эту черту Ферми, сказав, что Дон-Кихот никогда не был его героем.

15. Пропорциональные счетчики

В ходе работы над будущими детекторами для радиоактивного 37Ar Бруно сделал важное экспериментальное открытие – обнаружил новый режим работы пропорционального счетчика. Тогда одним из главных инструментов экспериментатора был счетчик Гейгера. Кино и телевидение создало зловещий, но правильный образ счетчика Гейгера – нечто щелкающее. Действительно, счетчик Гейгера работает при больших напряжениях на электроде и от факта прохождения частицы остается только щелчок, порождаемый большим импульсом тока. Было известно, что при малых напряжениях на электродах счетчика наступает так называемый пропорциональный режим: при прохождении ионизирующей частицы число электронов, достигающих анода, становится пропорциональным числу первоначально возникших ионов. То есть по величине импульса на аноде можно судить об ионизующей способности частицы. Причем считалось, что первичный сигнал нельзя усилить более чем в 100 раз. Однако Бруно вместе со своими коллегами Г. Ханной и Д. Кирквудом показали, что если первоначальных ионов мало – а именно так должно быть при детектировании нейтрино, где образуется буквально несколько атомов 37Ar, то коэффициент усиления пропорционального счетчика может достигать 1 000 000 [53]. Этот результат был не только очень важен для радиохимического метода, но и вообще положил начало широкому использованию таких детекторов, которые в наше время превратились в пропорциональные камеры, ставшие одними из основных трековых приборов в экспериментах по физике элементарных частиц.

С помощью пропорциональных счетчиков Бруно с Г. Ханной провели классический опыт по измерению массы нейтрино в распаде трития:

Рис. 15-1. Расчетный спектр электронов в распаде трития для разных значений массы нейтрино [54].

Идея опыта проста: надо измерить энергетический спектр электрона при как можно более высоких значениях. Это соответствует ситуациям, когда импульс нейтрино мал и предельное значение энергии электрона определяется разностью между энергией, выделяющейся в распаде (4), и массой нейтрино. Если масса нейтрино отлична от нуля, то энергетический спектр электронов будет оканчиваться при меньших значениях энергии, как показано на Рис. 15-1.

Понтекорво и Ханна измерили энергетический спектр электронов в распаде трития и получили первое ограничение на массу нейтрино – меньше 500 эВ [55]. С тех пор этот опыт повторяли много раз, каждый раз на новом уровне техники. Сегодня распад трития изучают в огромной установке KATRIN, где диаметр спектрометра достигает 10 метров. Набор статистики еще не закончен, последнее достижение – масса нейтрино меньше 1,1 эВ [56]. Это самое жесткое ограничение на массу нейтрино, полученное в прямых измерениях. То есть оказалось, что Понтекорво и Ханна в 1949 г. предложили лучший экспериментальный способ для прямого измерения массы нейтрино[9].

16. Универсальность слабого взаимодействия

В конце сороковых единственным известным процессом слабого взаимодействия был бета-распад нейтрона (2). Правда, в космических лучах уже был открыт мюон с массой 105 МэВ, но в первое время думали, что эта частица является переносчиком сильного взаимодействия. Называли ее «мезотроном». Существование мезотронов предсказывал японский физик Х. Юкава. Согласно теории Юкавы, атомное ядро стабильно за счет постоянного обмена мезотронами между протонами и нейтронами. То есть мезотрон – частица, склеивающая протоны и нейтроны в ядре.

Но в 1947 г. М. Конверси, Э. Панчини и О. Пиччиони установили, что мезотрон не является сильновзаимодействующей частицей. Они увидели, что положительные и отрицательные мюоны с одинаковой вероятностью проходят через графит. Отрицательно заряженные мюоны, подобно электронам, должны были замедляться, захватываться в атомы, а затем поглощаться ядром. Но раз этого не происходило, то вероятность захвата должна быть меньше вероятности распада мюона. Казалось бы, что тут такого? Но вероятность распада мюона была известна экспериментально, а вероятность захвата можно было оценить из теории Юкавы. Оказалось, что если мезотрон – частица Юкавы, то расчеты не сходятся с экспериментом в 1012 раз!

Сейчас, когда открытие означает тонкий эффект превышения сигнала над фоном на уровне пяти статистических ошибок, трудно представить, что было такое счастливое время, когда экспериментаторы находили явления, не сходившиеся с теорией в 1012 раз!

Луис Альварес в своей Нобелевской речи в 1968 г. говорил, что современная физика частиц началась именно с опыта Конверси – Панчини – Пиччиони.

На Бруно этот опыт также оказал сильнейшее влияние: просто изменил всю жизнь, поскольку привлек внимание к проблемам физики частиц и космических лучей [29]. Сам Бруно рассказывал о своих впечатлениях следующее [57]:

«Как только я прочел статью Конверси и др., я был буквально пленен частицей, которую мы теперь называем мюоном. Это была действительно интригующая частица: “заказанная” Юкавой и открытая Андерсоном, она, как обнаружили Конверси и др., в действительности не имела ничего общего с частицей Юкавы!

Я почувствовал себя подхваченным антидогматическим ветром и начал задавать массу вопросов типа:

– Почему спин мюона должен быть целым?

– Кто сказал, что мюон должен распадаться на электрон и нейтрино, а не на электрон и два нейтрино или электрон и фотон?

– Является ли заряженная частица, вылетающая при распаде мюона, электроном?

– Испускаются ли при распаде мюона другие частицы, кроме электрона и нейтрино?