Книги

Тайны чисел: Математическая одиссея

22
18
20
22
24
26
28
30

Роберто Карлосу требовалось выполнить штрафной не слишком близко к воротам, чтобы он мог нанести удар достаточно сильно для осуществления турбулентного обтекания и чтобы при этом у мяча было время замедлиться, не покидая поля. Когда мяч летит после удара со скоростью 110 км/ч, поток воздуха вокруг него хаотичен, но примерно в середине траектории он замедляется и турбулентность исчезает. Включается торможение, проявляется воздействие вращения мяча, и Бартез капитулирует.

Но данная математика влияет не только на футбол. Наши путешествия также подвержены хаосу, в особенности в воздухе. Большинство людей связывают слово «турбулентность» с просьбой пристегнуть ремни, поскольку они входят в зону, где хаотические потоки воздуха будут их кидать в разные стороны. Самолеты движутся значительно быстрее футбольных мячей, и хаотический поток воздуха, обтекающий их крылья, – турбулентный поток – увеличивает лобовое сопротивление самолета, что приводит к большему расходу топлива и дополнительным затратам.

По результатам одного исследования, снижение турбулентного сопротивления на 10 % могло бы увеличить размер прибыли авиакомпаний на 40 %. Авиаконструкторы всегда ищут способы изменить текстуру поверхности крыла, чтобы поток воздуха стал менее хаотическим. Одна идея состояла в том, чтобы сделать на крыле крошечные параллельные бороздки, расположенные так же плотно, как бороздки на грампластинке. Другое предложение заключалось в нанесении на поверхность крыла миниатюрных зубчиков, называемых дентикулами. Интересно, что кожа акулы покрыта естественными дентикулами, что демонстрирует приоритет природы над инженерами в открытии способа снизить сопротивление среды.

Хотя она изучалась крайне интенсивно, турбулентность, возникающая при движении мяча или крыла самолета, по-прежнему остается одной из самых больших тайн математики. Есть хорошая новость: мы сумели написать уравнения, определяющие поведение воздуха или жидкости. Плохая новость состоит в том, что никто не знает, как их решать! Эти уравнения важны не только для личностей вроде Бекхэма и Карлоса. Многим нужно решать их: синоптикам – чтобы предсказывать воздушные потоки в атмосфере, врачам – чтобы понимать кровообращение в теле, а астрофизикам – чтобы разобраться в эволюции звезд в галактиках. Все эти явления контролируются одной и той же математикой. В настоящее время метеорологи, конструкторы и другие пользуются лишь приближенными методами, но, поскольку за этими уравнениями прячется хаос, небольшая ошибка может сильно повлиять на результат – и предсказания будут совершенно ошибочны.

Эти уравнения называются уравнениями Навье – Стокса в честь сформулировавших их двух математиков XIX в. Их нельзя назвать простыми. Распространенная форма записи этих уравнений выглядит так:

Если вам незнакомы некоторые из символов в этих уравнениях, не печальтесь – немногие люди понимают их! Но для тех, кто сведущ в языке математики, эти уравнения играют ключевую роль в предсказании будущего. Они настолько важны, что первому человеку, решившему их, будет вручена премия в миллион долларов.

Великий немецкий ученый Вернер Гейзенберг, один из создателей квантовой физики, однажды сказал:

Когда я предстану перед Богом, то задам ему два вопроса: почему относительность? И почему турбулентность? Полагаю, на первый вопрос у него найдется ответ.

Когда Роберто Карлоса спросили, как он раскрыл секрет настолько феноменальных обводящих ударов, он ответил:

Я работал над точностью моих штрафных ударов с детства. После каждой тренировки я оставался еще на час, чтобы поупражняться в выполнении штрафных. Как и во всем остальном: чем больше боли и пота, тем больше достижений.

Думаю, то же самое относится и к математике. Чем труднее задача, тем больше будет удовлетворение, когда вы справитесь с ней. Если занятия математикой станут невыносимо тяжелы, вспомните слова Роберто Карлоса: «Чем больше боли и пота, тем больше достижений». И, когда вы окончательно решите одну из величайших математических загадок всех времен, каждый будет думать подобно Бартезу, глядящему на мяч в сетке своих ворот: «Как ему такое удалось?!»

Благодарности

В первую очередь я должен поблагодарить тех, кто помог мне взрастить эту книгу: моего редактора Робина Харви из издательства Fourth Estate, которому очень пригодилась его любовь к ультрамарафонам; представляющего мои интересы Энтони Топпинга из литературного агентства Greene & Heaton, которого можно уподобить моему личному тренеру, помогающему в писательских испытаниях; моего литературного редактора Джона Вудраффа, отказавшегося от идеи ухода на пенсию, чтобы привести эту книгу в божеский вид; и двух иллюстраторов – Джо Макларена, чьи иллюстрации к моей колонке в Times придавали мне радость по средам, и Раймонда Терви, превосходно изображавшего даже самые сложные формы.

Материал этой книги вырос из нескольких проектов.

В 2006 г. меня попросили прочитать рождественские лекции в Королевском институте. Традиция этих лекций восходит к 1825 г., а с 1966-го они показываются по телевидению. Цель этого мероприятия – познакомить широкую публику с наукой и в особенности привлечь молодую аудиторию к фактическим занятиям наукой. Мне повезло, ведь я посетил самые первые рождественские лекции по математике, прочитанные в 1978 г. Кристофером Зиманом. Тогда мне было 13 лет. Зиман говорил о столь увлекательных предметах, смешивавшихся в восхитительный коктейль, что в то Рождество я решил, кем хочу стать, когда вырасту: математиком, как он. Предложение прочитать лекции в 2006 г. дало мне замечательную возможность отплатить благодарностью Королевскому институту за пробуждение моей мечты. Я счел высокой честью полученный шанс на вдохновение нового поколения математиков.

Королевский институт поручил мне прочитать пять лекций, нацеленных на подростков 11–14 лет. Как правило, упор в рождественских лекциях делается на взрывы, сухой лед и привлечение добровольцев для демонстрации опытов. Поиск благовидных причин для подрыва чего-нибудь и выдумывание развлекательных игр для иллюстрации математики оказались сложной и интересной задачей. Но в результате у меня сложилось впечатление, что я пять раз выступал с математической пантомимой одного актера. Мне оказали большое содействие в подготовке лекций замечательные команды Королевского института, телеканала Channel Five и продюсерской компании Windfall Films, которая отвечала за подготовку цикла к телепоказу. В особенности я хочу поблагодарить Мартина Горста, Тима Эдвардса и Элис Джонс, которые помогли найти творческие способы оживления математики. Я также выражаю признательность Энди Мармери, Кэтрин де Ланж, Дэвиду Дугану и Дэвиду Коулмену, сыгравшим важнейшую роль в том, что лекции состоялись.

Мы провели испытание материала лекций во многих школах, но особенно я хотел бы поблагодарить толерантное руководство Еврейской школы в Кентоне, позволившее нам подвергнуть своих учеников воздействию целого ряда новых идей. Иудаизм и Рождество выглядят странной смесью, но, как я надеюсь, мы сумели показать ученикам, что язык математики универсален. Только основываясь на ответной реакции детей, мы могли судить, что было удачным, а что нет. Те исследования, которые мы провели, готовясь к лекциям, сыграли важную роль в отборе материала для данной книги.

У подготовки телевизионных передач о математике также была неоценимая роль в определении того, что в моем предмете вызывает интерес у широкой аудитории. Я хочу поблагодарить Алома Шаха, с кем я сделал несколько телефильмов, включая четыре передачи для канала Teachers TV, объединенные названием «Живопись числами» (Painting with Numbers), а также фильм о евклидовом доказательстве существования бесконечного количества простых чисел. В актерскую труппу этого фильма вошла моя команда из Воскресной футбольной лиги Recreativo Hackney. Материал, который был исследован в этих передачах, оказал большую помощь в создании рождественских лекций.

Цикл из четырех серий «История математики» (The Story of Maths), который был создан мною совместно с Би-би-си, заложил фантастический фундамент для многих из рассказов этой книги. Я должен поблагодарить моего исполнительного продюсера в Би-би-си Дэвида Окуэфуна, благодаря любви к математике которого и появилась на свет эта идея. Открытый университет Великобритании обеспечил неоценимую финансовую и академическую поддержку того, что эти передачи стали реальностью. Как только начались съемки, работа стала делом всей команды, в особенности я выражаю благодарность Карен Макганн, Крысе Дерецки, Робину Дэшвуду, Кристине Лоури, Дэвиду Берри и Кеми Маекоданми.

На написание книг, подготовку телефильмов и лекций, нацеленных на широкую аудиторию, уходит немало времени. Я признателен всем тем, благодаря кому у меня появилось это время. Чарльз Симони осознал до многих других, что кафедра, созданная для популяризации научного знания, даст возможность ее руководителю пробуждать интерес к науке у многих людей. Оксфордский университет оказывал всяческую поддержку моим усилиям в деле популяризации математики. Также я был стипендиатом программы Исследовательского совета инженерных и физических наук (Engineering and Physical Sciences Research Council) по взаимодействию со средствами массовой информации, что было неоценимой помощью. Без всей этой поддержки я был бы не в силах оказать воздействие на широкую аудиторию.