Книги

Последняя трапеза

22
18
20
22
24
26
28
30

"Я привык считать, что не в силах устоять перед загорелыми женщинами которые летом весь день превосходно сочетаются с морской гладью и песчаными пляжами, лежа на солнце. А она такая белая, будто белая мутная пленка на дисплее при некоторых сценах в играх, что убирается выставлением холодного профиля цветопередачи.

-- У тебя что-то общее с эффектом тумана...

-- А у тебя что-то со зрением..." - иронизирует бывшая жена.

Наконец замечает: остался параллельный перенос, но операция поворота заменилась на другую операцию.

Вывод:" Получилось!"

С самого своего появления в уме эксперимент "Седенион с двумя аргументами и одной неизвестной переменной в пространстве Минковского" состоялся он был окутан ореолом тайны, поскольку полностью подрывает наши привычные представления о пространстве и времени.

"Все мы в школе учили формулы теории относительности, но мало кто действительно понимал их..."

Теперь он в пространственно - временном континиуме! Свершилось.

Здесь Симон должен найти расстояние инвариантное при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве и сравнить...

Нужно иметь какой-то визуальный ориентир, нужна динамика, чтобы было что-то, что можно повертеть в руках...

И, оказывается, всё идёт по плану - в компьютере Таймдрома при стартем оказалось 301 845 стоковых изображений и фотографий по запросу "загорелые девушки" доступных без роялти. Они были со мной - "последняя трапеза" вместо звонка бывшему сыну. Практически - в бесконечно большом количестве!

"Значит так, - рассуждает Симон, - подтверждаю ещё раз успешное начало экспериментов. Я - в пространстве с невырожденной симметричной метрикой!"

Делает такое же бесполезное дело как вчера - звонок домой - вызывывает диспетчера:

-- Седенион Один! Седенион Один! Я - Седенион Два.

Без ответа.

- Седенион Один! Седенион Один! Я - Седенион Два.

Бывший диспетчер уже никогда не ответит.

... Вспомнилось самое спокойное в жизни и что такое обычное евклидово пространство:

...Детство. Кухня. Плоскость в которой имеются некоторые геометрические фигуры: точки, отрезки. И две операции: параллельный перенос, и поворот. Мама с папой Симончика достают из огромной кастрюли с кипящей водой консервированные банки с кабачковой икрой... - так выглядит их картина из неподвижной системы отсчета.

"Помни - до того как возникнет инвариант на много милоиардов лет у тебя будет пятнадцать рецедивов возвращения с опазданием прежде чем закончится эксперимент окончательно в интервале простраства-время" - напоминает себе Симон.