Книги

Метазоа. Зарождение разума в животном мире

22
18
20
22
24
26
28
30

Нервная система – это вторичная разработка мощностей, присущих практически всему живому, но животные развили их и укрепили. Чтобы осознать, сколько всего делает для нас нервная система, полезно вспомнить о «нейротоксинах» – быстродействующих ядах, которыми пользуются и животные типа змей, и преступники. Зловещее оружие типа зарина, VX и «Новичка» – это нейротоксины, нервно-паралитические яды. В детстве, услышав о нейротоксинах, я подумал: и что же? Человек ничего не чувствует? Он цепенеет? Не может думать? Но нейротоксины блокируют не только эти функции. Смерть обычно наступает в результате асфиксии или остановки сердца. Наша уязвимость перед такими химическими веществами – которые объективно не так уж вредоносны, ведь они не разрушают ткани, а только препятствуют передаче сигнала между клетками – выразительно демонстрирует, как нервная система связывает тело животного в единое целое. Если нацелиться на службу передачи сообщений и, следовательно, помешать координации, это тело можно убить.

Еще одно приспособление, тесно связанное с нервной системой с точки зрения эволюции, – мускулатура{56}. Поведение стрекающих, которое разительно отличается от едва заметных движений морских губок, управляется мускулами. В предыдущей главе мы говорили об «изобретении» цитоскелета – подвижного каркаса из микротрубочек, который есть у некоторых одноклеточных организмов. Координация этих опорных конструкций, расположенных внутри множества связанных друг с другом клеток, лежит в основе эволюции мышечной системы животных. Мускулы отвечают за согласованное сокращение и расслабление обширных слоев клеток.

Какие-то действия животные могут осуществлять и без помощи мускулов. Тело гребневика расчерчено полосками, покрытыми тонкими ресничками, которые есть и у многих одноклеточных организмов. Реснички ориентированы вертикально, напоминая гребешок (в честь него животное и получило свое имя). Гребневик, как и многие одноклеточные, плавает, шевеля ресничками. (У гребневика есть и мускулы, которые он использует для руления, а также для захвата пищи.) Другие животные тоже осуществляют мелкие движения при помощи ресничек. Но крупные действия – захватывание пищи восьмилучевым кораллом, плавание медузы и другие, появляющиеся на более поздних этапах эволюции, – осуществляются при помощи мускулов.

Обсуждая приспособления, которые позволили животным со временем занять свою уникальную нишу, я делал упор на новых возможностях действия. Еще одно свойство животных, о котором я нечасто упоминал в этой главе, – способность ощущать (sensing). Ощущение дано не только животным – это общая характеристика всех известных форм клеточной жизни, но у нас есть серьезные основания полагать, что ключевым, поворотным событием первых этапов эволюции животных стало именно появление действия на многоклеточном уровне. То был поистине трансформирующий фактор.

У современных книдарий есть разные органы чувств – так же, как и у их вероятных предков на всех стадиях эволюции. Но способность стрекающих ощущать уступает их же способности действовать{57}. У кораллов и актиний нет глаз, а у других стрекающих они присутствуют разве что в зачаточном состоянии. (Из этого правила есть одно крупное исключение – кубомедуза, которая считается более поздним продуктом эволюции.) Полип ловит пищу, колония кораллов расширяется и сжимается, стрекающие клетки выстреливают жала – все эти действия представляют собой реакцию на стимулы определенного типа; кроме того, книдарии, похоже, обрели чувство равновесия или научились ощущать гравитацию. Медуза ориентируется в воде посредством особых органов, внутри которых есть маленькие кристаллы – статоцисты{58}. Эти кристаллы тяжелее воды; они смещаются, реагируя на меняющееся положение тела медузы, и их перемещение можно отследить. Может, у книдарий есть и другие слабые формы ощущения, но способность стрекающих ощущать нельзя назвать их сильной стороной, прорывом или отличительной чертой. Действительным достижением книдарий стал новый вид действия – крупное движение, осуществляемое посредством мускулов.

Не теряя из виду основной темы этой главы, которая, напомню, посвящена изменению образа жизни животных, давайте на минуту задумаемся о психофизиологической проблеме (mind-body problem), которая упорно маячит на заднем плане. Общепринятые подходы к ней обеспечивают нас рядом концепций, помогающих определить, что же делает разум. Одна из таких концепций – субъективность, которая тесно связана с идеей агентности. Субъективность касается «присвоения» опыта, ощущения самости. Она описывает опыт как нечто, что с человеком случается. Агентность же связана с активным действием и инициативой. Агентность – то, что происходит благодаря мне самому, это источник действия. Агентность фиксирует внимание на результатах действий человека. Интересно, что слово «субъект» (хотя и не субъективность) имеет и другой набор коннотаций, где субъект обозначает инициатора, автора действия – субъект здесь противопоставлен объекту. И это не единственный пример того, как переплетены эти понятия.

В общепринятом понимании субъективность и агентность указывают на разные аспекты бытия животного или человека – на то, что он ощущает, и на то, что он делает. Однако с эволюционной точки зрения субъективность и агентность тесно связаны. Задача ощущения – контролировать действие{59}. С биологической точки зрения нет никакого смысла воспринимать информацию, которую нельзя использовать. В эволюции разума агентность и субъективность развивались параллельно, хотя и не обязательно в жесткой сцепке друг с другом. На каких-то стадиях, вероятно, эволюция действий могла вырваться вперед. Новый вид агентности мог возникнуть и на фоне ограниченных сенсорных возможностей.

На мои взгляды, изложенные здесь, повлияли размышления голландского психолога и философа Фреда Кейзера, который уделяет особое внимание порождению действия как центральной задаче начального этапа эволюции нервной системы{60}. Все, что обсуждается в этой главе, – возникновение действия на многоклеточном уровне, роль и значение этого достижения и его связь со строением тела животных – написано под влиянием этого автора. Кейзер выдвинул интересное предположение о связи ощущения и действия у самых первых животных. Он думает, что какие-то новые виды ощущений могли достаться животным случайно, практически «в нагрузку», в качестве побочного эффекта эволюции сложного действия. Представьте, что вам нужно сконструировать систему, которая могла бы выполнять некое координированное, слаженное движение. Для этого потребуется, чтобы одни части системы были чувствительны к тому, чем заняты другие ее части. Но что случится, если такая система испытает на себе внешнее воздействие, скажем ее что-то коснется? Это событие будет автоматически зарегистрировано, поскольку вмешается в привычный сценарий взаимодействия отдельных частей системы. Чувствительность, обращенная внутрь системы, будет – или с легкостью может начать – фиксировать, что снаружи тоже что-то происходит. Даже если бы нервная система направляла свое внимание исключительно внутрь (Кейзер никогда не предполагал ничего подобного, но допустим), она неизбежно реагировала бы и на происходящее вне ее. Можно даже сказать, что такая система не могла бы этого не делать. Новые, крупные действия провоцируют расширение границ чувствительности.

Кажущаяся асимметрия сложного действия и простого ощущения на первых этапах эволюции животных может быть чистой иллюзией. Сложное ощущение может не лежать на поверхности. Но, если рассуждать о первых формах опыта или о том, чем располагали животные до опыта, было бы интересно представить себе существо, чьи моторные навыки развиты лучше сенсорных, и подумать, действительно ли, как утверждал Кейзер, ощущение автоматически подтянется до нужного уровня.

Давайте теперь вернемся к основной теме главы и посмотрим, как она выглядит в свете всех этих абстрактных рассуждений. Все живые существа что-то делают. Они приспосабливают свое поведение к среде и сами, в свою очередь, воздействуют на окружающий мир. Но у животных это происходит по-новому. На эволюционной линии животных появились многоклеточные существа, а с ними и многоклеточное действие – действие, осуществляемое слоями клеток, которые сокращаются, перекручиваются и хватают. Все это стало возможным благодаря нервам и мускулам; губка ничего подобного не умеет. Действие такого типа стало поворотным пунктом эволюции: оно изменило все.

Оно изменило все, но не сразу. Когда эта трансформация началась и что за животное стояло у ее истоков? Как оно выглядело – как стрекающее или как существо, жившее еще раньше? Как мы увидим далее, движок, запустивший эволюцию действия у животных и создавший Землю, какой мы ее знаем, завелся не с первого раза.

От авалона до намы

В предыдущей главе мы искали подсказки, способные навести нас на мысли о том, какими были древние формы животных, – с этой целью наше внимание было сосредоточено на современных животных, максимально отличающихся от человека. С того места, где мы с вами находимся сейчас, внешние побеги ветви животных видны плохо. Но, если посмотреть на ветки, расположенные ближе к нам, многое становится более ясным. На рисунке, где линия времени направлена вверх, некоторые эволюционные связи будут выглядеть примерно так.

Нервная система появилась где-то ниже того разветвления справа, что ведет к млекопитающим и головоногим, с одной стороны, и к стрекающим – с другой. Есть вероятность, что в ходе эволюции нервная система появлялась дважды, но, чтобы утверждать наверняка, нам нужно больше знать о тех сегментах дерева, которые на рисунке заменены пунктирными линиями.

Все разветвления и эволюционные новшества, о которых мы говорили прежде, случились задолго до того, как в палеонтологической летописи появились записи, касающиеся животных. Первый геологический период, сохранивший для нас ископаемые остатки животных, – это эдиакарий, начавшийся около 635 миллионов лет назад{61}. Занавес, медленно поднимающийся над первобытным миром, открывает взгляду сцены, которые совершенно не похожи на жизнь, окружающую нас сегодня.

Итак, место действия – морское дно, иногда мелководье, иногда океанские глубины, населенные различными мягкотелыми созданиями; среди них есть и совсем крошечные, и достигающие даже метра. Некоторым, несмотря на мягкое тело, удалось оставить ископаемые следы. Следы эти – самых причудливых форм: растительные узоры, завитки и диски, спирали и фракталы.

Но можем ли мы быть уверены, что эти следы действительно оставлены животными? В некоторых случаях это и вправду неясно: какие-то ископаемые могут представлять собой канувший в Лету эксперимент – или эксперименты – эволюции многоклеточных, не имеющий к животным никакого отношения. Но как минимум иногда это действительно останки животных. В 2018 году студент Илья Бобровский это подтвердил: он спускался по веревке со скалы на севере России, где были обнаружены крупные и отлично сохранившиеся окаменелости известного эдиакарского существа, дикинсонии{62}. Бобровский подозревал, что скала таит в себе не обычные окаменелости, но остатки, которые подверглись естественной мумификации и законсервировались более чем на полмиллиарда лет. Мумифицированные тела содержат холестерин – химическое вещество, которое производят только животные. Дикинсония – плоское создание длиною до метра, почти наверняка обитавшее на дне моря и похожее на коврик для ванной. У него не было ни глаз, ни конечностей, ни каких-то других знакомых нам органов, но для эдиакарских животных это типично. У них уже было тело определенной формы – листок или диск, трех- или пятилопастный, – но не было ни ног, ни плавников, ни когтей. Признаки сложных органов чувств типа глаз тоже отсутствовали.

Более того, среди эдиакарских животных не удалось отыскать таких, кого можно было бы без сомнений отнести к губкам или стрекающим, в которых мне виделся ключ к разгадке. Но обнадеживающие признаки все же есть. Некоторые эдиакарские существа весьма напоминают современное животное под названием «морское перо»{63}. Эти организмы, полностью оправдывающие свое имя, относятся к той же группе, что и мягкие кораллы, к которым мы спускались в начале главы, только напоминают они скорее не дерево, а старое перо для письма, воткнутое в морское дно.

Пока неясно, являются ли какие-то эдиакарские существа близкими родственниками морского пера, поскольку при ближайшем рассмотрении они во многом отличаются. Другие эдиакарские организмы были похожи на пальмовые ветви, а это также позволяет предположить, что их можно отнести к книдариям, однако сходство может быть обманчивым.

Поначалу многих обитателей эдиакария называли медузами – так их окрестил Рег Спригг, который первым обнаружил эдиакарские окаменелости в заброшенной шахте на юге Австралии в 1946 году{64}. Большую часть тех окаменелостей сегодня классифицируют иначе, но вполне вероятно, что в эдиакарских морях действительно обитали настоящие медузы; правда, тела их не сохранились, распавшись в прах.