Во-первых, концепция технологической сингулярности должна стать объектом изучения в массовой школе. Есть такой спецкурс в некоторых университетах – «Концепции современного естествознания». Он на концептуальном уровне, без математической и иной специальной детализации, знакомит студентов с основными мировозренческими научными теориями, показывает их взаимосвязи. Отличная идея, которую очень правильно было бы перенести в школу. Технологическая сингулярность, искусственный интеллект и иные порождения цифрового мира должны найти свое отражение в таком спецкурсе.
Во-вторых, учеников неплохо было бы знакомить с более локальными проявлениями сингулярности в мире. Сингулярность часто связывают с процессами и явлениями, развивающимися по экспоненциальным законам. Историки считают, например, что по таким законам развивались и приходили к упадку великие империи.
В-третьих, страшилку «технологической сингулярности» хорошо было бы использовать для популяризации в молодежной среде тематики космических исследований. Вернор Виндж в своей статье рассматривал вариант космической экспансии как спасение человечества от наступающей технологической сингулярности. В 60-70 годы мальчишки и девчонки во многих странах мечтали стать космонавтами. Это была одна из самых романтических профессий. Сегодня, к сожалению, мечты у молодежи намного более приземленные.
В любом случае данная перспектива – это отдаленное будущее. Более приземленные угрозы и возможности человечеству стоит ждать от слабого искусственного интеллекта. О нем – следующая история.
История 8. Слабый ИИ, ущербный и всемогущий
В предыдущей истории мы заглянули в будущее достаточно далеко. Сильный ИИ, сравнимый с человеческим интеллектом, это очень круто, волнительно и опасно. Но пока где-то там, за горизонтом. Есть исследователи, пусть они занимаются своим делом. Здесь и сейчас происходят более прозаичные вещи, которые по своим последствиям для обычных людей опережают многие инновации.
В международных отчетах последних лет, описывающих рынок труда, утверждается, что в ближайшие 20 лет будут автоматизированы до 50% всех рабочих мест. И все это благодаря слабому искусственному интеллекту и нейронным сетям.
Исследованиям в области искусственного интеллекта уже более 50 лет. Очень долгое время они оставались на периферии общественной жизни. Исследователи с завидным постоянством собирались на свои симпозиумы, которые мало кого интересовали. Широкую общественность интересовал один вопрос – когда компьютер обыграет в шахматы чемпиона мира. Когда в 1997 году компьютер Deep Blue в шести партиях победил Гарри Каспарова, интерес снова угас.
В те годы более-менее широкое практическое применение получили экспертные системы, компьютерные системы распознавания естественного языка и перевода с одного языка на другой. Системы распознавания образов, построенные на сложнейшем математическом аппарате, давали слишком много ошибок. Разработка прикладных программных продуктов, способных делать логические выводы и решать задачи в рамках некоторой системы аксиом и правил вывода, оказалось чрезвычайно сложным и затратным делом.
В начале 2000-х я участвовал в попытке создания на языке Prolog автоматизированной системы, способной доказывать теоремы и решать задачи школьного курса планиметрии. Мы просто утонули в сложности задачи и от проекта отказались.
В традиционную классификацию систем искусственного интеллекта входят еще и гипертекстовые системы, базы знаний, системы контекстной помощи и некоторые другие. Хотя более точно их называть «интеллектуальные информационные системы» или «системы с интеллектуальным интерфейсом». Они широко применяются в современном цифровом мире. Тот же интернет – это огромная гипертекстовая распределенная система. Но даже к слабому искусственному интеллекту их можно отнести с очень большой натяжкой.
Вернемся к ходу событий. Равнодушие широкой общественности к тематике искусственного интеллекта наблюдалось до второго десятилетия XXI века. Потом оно вдруг сменилось взрывообразным ростом интереса. Все вокруг заговорили о том, что искусственный интеллект и нейронные сети не просто тренд. Это революция на рынке труда, это страшная угроза для многих профессий, это возможность наконец построить общество изобилия.
Что же это – реальная революция или очередной хайп, который любят и умеют создавать современные СМИ? Для ответа на этот вопрос нужно понять причины, почему интерес к теме возник именно сейчас. Что такого произошло около 10 лет назад, позволяющее сегодня трубить об эпохе искусственного интеллекта и нейронных сетей?
Произошло несколько событий.
Во-первых, к 2010 году ученые сделали прорыв в математическом обеспечении для обучения нейронных сетей. Они научились обучать все их слои, а не только последние. Это существенно повысило надежность принимаемых решений.
Во-вторых, в 2010 году появилась база данных ImageNet, содержащая 15 миллионов изображений в 22 тысячах категорий. ImageNet многократно превысила объем существовавших до этого баз данных изображений и стала доступна для любого исследователя. Распознавание и классификация изображений – одна из наиболее популярных задач для нейросетей. Появление ImageNet облегчило обучение нейросетей данного типа, позволило существенно улучшить качество распознавания. Путать кошку с собакой хорошо обученные нейросети перестали.
В-третьих, новые вычислительные мощности, облачные хранилища данных и наработанные типовые программные модули сделали работу с нейросетями доступными самым разным энтузиастам. Относительно несложный математический аппарат, вполне доступный студентам мехматов первых курсов, позволил привлечь значительные интеллектуальные ресурсы.
В проектирование и обучение новых нейросетей в самых разных отраслях оказалось втянуто достаточно много людей. Вот для примера несколько результатов, взятых из открытых источников.