Книги

Знание-сила, 2009 № 08 (986)

22
18
20
22
24
26
28
30

Прямое обнаружение частиц темной материи и изучение их свойств, скорее всего, приведет к прорыву в космологии. Например, согласно одной из наиболее правдоподобных и популярных гипотез, темная материя образовалась во Вселенной через 10 микросекунд после Большого Взрыва. Если эта гипотеза подтвердится, то мы сможем с уверенностью судить, какова была Вселенная в это время и как она тогда расширялась. Разумеется, здесь возможны и сюрпризы: экстраполяция с временного масштаба 1 секунды после Большого Взрыва (эпоха, о которой сегодня имеются экспериментальные данные) на масштаб 10 микросекунд может оказаться совсем не безобидным делом. Тем интереснее окажется ситуация в космологии ранней Вселенной!

Изучение темной энергии тоже, возможно, приведет к новым открытиям «первого ранга». При имеющейся точности наблюдения темная энергия выглядит как однородная в пространстве и постоянная во времени величина — мировая константа, космологический A-член, введенный в теорию, а затем отброшенный Эйнштейном. Теоретики, однако, обсуждают и другие возможности. Темная энергия может быть энергией новых сверхлегких и сверхслабых полей, тогда она зависит от времени и, вообще говоря, неоднородна в пространстве. Другой вариант: существующая теория гравитации — общая теория относительности — может перестать быть справедливой на космологических расстояниях и временах. Если в природе реализуется какая-нибудь из этих возможностей, то это проявится в первую очередь в особенностях ускоренного расширения Вселенной и будет обнаружено в астрономических наблюдениях на инструментах новых поколений.

Несколько слов о предсказаниях инфляционной теории, описывающей гипотетическую (пока?) стадию эволюции Вселенной перед стадией горячего Большого Взрыва. Высказывания на эту тему Дэвида Шрамма и Ховарда Джорджи являются по меньшей мере спорными. Простые, а потому наиболее правдоподобные инфляционные модели в действительности приводят к характерным предсказаниям, которые в будущем вполне могут найти экспериментальное подтверждение. Среди этих предсказаний — существование реликтовых гравитационных волн во всех диапазонах частот, с периодами вплоть до времени жизни Вселенной. Есть и более тонкие предсказания, относящиеся к свойствам тех неоднородностей материи, из которых впоследствии сформировались структуры (галактики, скопления галактик и т. д.), а также к свойствам реликтовых гравитационных волн. Реликтовые гравитационные волны и некоторые предсказываемые инфляционной теорией особенности спектра возмущений материи (точнее, их отпечатки в реликтовом электромагнитном излучении и в спектре структур) будут, возможно, открыты довольно скоро. Это станет сильнейшим (хотя, строго говоря, не окончательным) аргументом в пользу инфляционной теории. В дальнейшей перспективе инфляционная теория (если она верна) может стать надежно подтвержденной наблюдениями.

Говоря об инфляционной теории, нужно подчеркнуть, что такой сценарий развития событий вполне может оказаться неверным. В конце концов, инфляционная теория — пока только гипотеза (хотя и согласующаяся со всем тем, что мы знаем о Вселенной; отметим в этой связи, что многие другие гипотезы, популярные в 80-х — начале 90-х годов, были отвергнуты на основании полученных впоследствии наблюдательных данных). Однако в любом случае есть хороший шанс, что со временем «миф о творении» заменится на теоретически обоснованное и экспериментально проверенное представление о том, как была устроена Вселенная до эпохи горячего Большого Взрыва, в самые первые мгновения своего расширения.

Расширение Вселенной ускоренными темпами

Из всего сказанного, мне думается, должно быть ясно, что говорить о конце физики элементарных частиц и космологии сегодня по меньшей мере преждевременно. Хотя пессимистический взгляд на будущее опровергнуть невозможно — природа может оказаться совсем не такой, как мы в общих чертах ожидаем, надежды на новые открытия могут не оправдаться — более обоснованным мне представляется прогноз, согласно которому в обозримой перспективе общая картина мира будет существенным образом расширяться.

Тем не менее взгляд Джона Хоргана в определенной степени отражает объективные процессы, происходящие в науке. Прежде всего наука развивается неравномерно. Между крупными открытиями лежат периоды осмысления и уточнения новых представлений, постепенного накопления знаний, совершенствования теории и эксперимента. По крайней мере, в некоторых областях эти периоды становятся все более и более растянутыми во времени. Например, современная теория элементарных частиц и их взаимодействий — Стандартная модель — была в весьма конкретном виде сформулирована в первой половине 70-х годов, и с тех пор она только подтверждалась, а необходимости в ее кардинальном расширении не возникало (были открыты «только» новые кварки и новые частицы, аналогичные электрону и электронному нейтрино, — т-лептон и соответствующее ему нейтрино; особняком стоит открытие нейтринных осцилляций). В этом смысле ученые, работавшие в этой области науки (в том числе в какой-то степени и я), действительно оказались «в списке опоздавших», а точнее, в «списке пришедших не вовремя».

Другое, хотя и связанное с предыдущим, обстоятельство, о котором говорит и Джон Хорган, — сравнительно медленное развитие экспериментальных исследований в таких областях, как физика элементарных частиц и (пока в меньшей степени) космология. Соответствующие приборы — ускорители, детекторы, наземные и космические телескопы — становятся все более и более сложными и дорогостоящими. К последнему факту можно относиться по-разному. С одной стороны, можно беспокоиться (или делать вид, что беспокоишься) о сиюминутном влиянии на карман налогоплательщика — и закрывать выдающиеся проекты, как это сделали в США со сверхпроводящим суперколлайдером, или не открывать новые крупные проекты вовсе, как это пока происходит в России. С другой стороны, можно всячески поддерживать создание сложных установок для нужд фундаментальной науки, понимая, что при этом возникают новые технологии самого передового уровня (на существующей технологической базе за границы познания не выйдешь), растет людской потенциал, повышается интерес общества к науке, обеспечивается приток молодежи в наукоемкие области и т. д. Второй подход мне представляется гораздо более дальновидным, но в любом случае замедление темпов экспериментальных исследований — неизбежность.

Это, конечно, представляет собой серьезную проблему в человеческом плане. Реальность такова, что физик-экспериментатор за всю свою жизнь успевает принять участие лишь в небольшом числе экспериментов, а иногда и вообще всего в одном. Последствия для профессионального и карьерного роста, привлекательности для молодежи и т. д. очевидны.

С замедлением темпов получения новых экспериментальных результатов, по крайней мере отчасти, связано и то, что «у гениев нашей эры — куда меньше возможностей для открытий, чем это было у Эйнштейна и Бора». Целый ряд блестящих гипотез до сих пор не нашли своего экспериментального подтверждения. Пример — гипотеза о Большом объединении сильных, слабых и электромагнитных взаимодействий, из которой следует предсказание нестабильности протона (при формулировке и развитии этой гипотезы одной из ключевых фигур был, кстати, Ховард Джорджи).

Высказанная и обоснованная в середине 70-х годов, она до сих пор не доказана, несмотря на все усилия физиков-экспериментаторов. Вместо этого выяснилось, что время жизни протона превышает гигантскую величину в 1033 лет. Вполне возможно, что распад протона будет все же обнаружен, однако для этого необходимо создание подземного детектора с массой не менее 1 миллиона тонн. Задумаешься тут о конце науки!

Космический телескоп нового поколения Джеймса Вебба

Напрашивается следующий вывод. Дело не в том, что «все самое интересное и значимое — не будущее науки, а ее славное прошлое». Фундаментальная наука как таковая имеет прекрасные перспективы с точки зрения открытий самого высокого ранга. Проблема в том, что временной масштаб, необходимый для того, чтобы эти открытия были сделаны, становится все более и более протяженным. Экстраполируя, можно предположить, что со временем он растянется на несколько поколений, а потом и еще больше. Выдвигать первоначальные гипотезы и проектировать эксперимент будут ученые одного поколения, развивать теорию и создавать установку — другого, получать результаты — третьего. Как в описаниях писателями-фантастами полетов к далеким звездам: улетают с Земли одни люди, а прилетают назад их далекие потомки.

Здесь-то и возникают главные вопросы. Сможет ли научное сообщество приспособиться к работе в таком режиме? Сумеет ли оно воспроизводить себя? Будет ли согласно все общество поддерживать фундаментальную науку, достаточной ли для этого окажется у него тяга к познанию мира?

Мне думается, что человек настолько любопытен, что даже такого рода трудности его не остановят, и ответы на перечисленные вопросы окажутся в конце концов положительными. Подтверждение этому я вижу в том опыте, который уже накопился в физике элементарных частиц и близких к ней областях. От идеи эксперимента до его реализации и получения научных результатов уже сейчас проходит, как правило, двузначное количество лет. За это время состав команды экспериментаторов успевает заметно обновиться, а теоретики существенно уточняют, а иногда и вовсе меняют свои представления об ожидаемых результатах. Тем не менее это не стало непреодолимым препятствием для развития.

До сих пор «подстраивание» научного сообщества к новой реальности происходило в значительной степени стихийно. Книга Джона Хоргана подталкивает к осознанию возникающей в науке новой ситуации, ее обсуждению и в конечном итоге к выработке адекватного представления о том, что такое прогресс фундаментальной науки, и о том, что нужно делать, чтобы этот прогресс не останавливался.

По поводу конца науки

Эрик Галимов

Э.М. Галимов — академик, директор Института геохимии и аналитической химии им. В.И. Вернадского РАН.

Эпатажное произведение Джона Хоргана — литературного критика и журналиста — вызвало общественный резонанс по двум причинам. Во-первых, всегда привлекателен вызов чему-то общепризнанному. Усомниться в перспективах науки — это круто. Во-вторых, прием, который использует Хорган, ссылаясь на знакомство и интервью с крупнейшими современными учеными, такими, как Л. Полинг, Ф. Крик, Р. Фейнман, М. Гелл-Манн, К. Шеннон и другими, придает значительность суждениям Хоргана, так, как если бы они исходили от этих авторитетных ученых.