Книги

Живой мозг. Удивительные факты о нейропластичности и возможностях мозга

22
18
20
22
24
26
28
30

А дело в том, что гиппокамп играет в обучении временную роль и не служит местом постоянного хранения воспоминаний: он передает эту информацию участкам коры, способным более длительное время сохранять ее. Молисон мог в подробностях вспомнить события, предшествовавшие операции12, но то, что случилось позже, помнить не мог, так как для формирования новых воспоминаний требовался гиппокамп, к тому моменту удаленный.

Так каким же образом воспоминания переезжают со станции Гиппокамп на постоянные квартиры в коре головного мозга? Одно из предположений таково: устойчивое сохранение достигается не с первого раза, когда некий паттерн активности проходит через кору; напротив, чтобы воспоминание в ней закрепилось, гиппокамп должен несколько раз реактивировать эту дорожку. Отсюда можно предположить, почему гиппокамп необходим для закрепления воспоминания: ему необходимо снова и снова проигрывать паттерны для коры13. Попадая в кору, воспоминания со временем стабилизируются. В случае с Молисоном было иначе: повторные активации отсутствовали, а значит, отсутствовали и воспоминания. Система сохранилась такой же, какой и была.

Подобное перемещение воспоминаний наблюдается во многих областях мозга. Предположим, вы выучили новые ассоциации: красный квадрат означает, что надо поднять руку вверх, синий круг — хлопнуть в ладоши. Со временем, после должной тренировки, вы сможете быстрее реагировать на эти знаки. Пока вы обучаетесь данному навыку, в определенных областях мозга (например, в хвостатом ядре) легко заметить изменения в ответ на подкрепляемые вознаграждением ассоциации. Однако если вы продолжите поднимать руку и хлопать в ладоши, соответствующая активность в конце концов обнаружится в других областях мозга (в префронтальной коре). В данном отделе нейроны меняются медленнее, и это наводит на предположение, что первая область преподает полученные знания второй14.

Еще пример: когда вы первый раз встаете на ролики, вам приходится все время следить за движениями рук и ног и прикладывать массу сознательных усилий. Но после многодневной практики вы уже не думаете, как двигать ногой или рукой, а проделываете движения автоматически. Так происходит потому, что структуры мозга, вовлеченные в моторное научение (базальные ганглии), передают выученное другим отделам, в данном случае мозжечку.

Идея переадресовки поступающих пакетов воспоминаний помогает разрешить дилемму стабильности — пластичности, но открытым остается вопрос ограниченности «складского пространства». Если вы отгружаете свои пакеты по всему миру, никаких затруднений не возникает. Но если вы просто переправляете их на другой склад, то вместе с ними перемещается и проблема свободных складских площадей, ведь второй склад тоже вскоре заполнится.

Все эти соображения выводят нас на исходную точку пути к третьему, более углубленному решению.

За пределами синапсов

Открытие феномена синаптических изменений побудило тысячи исследователей к подробному описанию этого явления и изучению его молекулярных структур. Однако усиление и ослабление синапсов не только не единственный, но еще и не самый важный механизм памяти15. Результаты изучения данных процессов на протяжении десятилетий свидетельствуют о том, что синаптическая пластичность важна для обучения и запоминания, но свидетельств того, что этого достаточно, нет.

Возможно, изменение силы синапсов — всего лишь способ, с помощью которого взаимосвязанные клетки уравновешивают возбуждение и торможение, чтобы не допускать эпилепсии (перевозбуждение) или выключения сознания (сверхторможение). В этом свете синаптические изменения представляются последствиями сохранения воспоминаний, но никак не основным механизмом памяти. Исследователи — как теоретики, так и экспериментаторы — уделяют наибольшее внимание изменениям в отдельных синапсах, не принимая в расчет подобные процессы, порожденные активностью других компонентов системы. При таком подходе нейробиология рискует упустить из виду часть Розеттского камня[57] памяти и так и не найти ключи к окончательной расшифровке ее механизма. На самом деле в нервной системе мы повсюду обнаруживаем настраиваемые параметры. У Матушки-природы предусмотрены тысячи уловок для накопления мелких изменений, каждое из которых способно изменять поведение сети.

Представьте, что вы внеземное существо, впервые обнаружившее новую форму жизни — человека. Разве вас не озадачит такое множество подвижных частей и структур, совместно образующих живую систему, именуемую человеческим мозгом? Наблюдая, как люди взаимодействуют между собой в повседневной жизни, ваши инопланетные глаза с высокой разрешающей способностью начнут замечать изменения в формах нейронов под влиянием приобретаемого опыта, скажем рост или усыхание дендритов. Сфокусировав взгляд, вы заметите изменение объема сигнальных химических веществ, продуцируемых одной клеткой в ходе коммуникации с другой, а также изменение числа рецепторов при приеме химического месседжа. Вас восхитят своей изощренностью молекулярные и ионные каскады внутри нейронов, осуществляющие вычисления и подстройки в ответ на каждый новый стимул. В нейронном ядре вы увидите, как замысловатые химические структуры прикрепляются к извилистым нитям ДНК, вызывая большую экспрессию одних генов и подавляя другие.

Вас, вероятно, поставит в тупик столь сложно устроенная система, в которой пластичность проявляется повсеместно, во всех механизмах. Они все гибко-подвижны. Параметры меняются на всех уровнях и во всех масштабах, от роста и встраивания новых рождающихся нейронов до изменений в экспрессии генов. Когда биологическая система допускает такое огромное количество степеней свободы, возможности для стратегий сохранения памяти беспредельны.

В сущности, у нас имеется много надежных оснований считать, что синапсы не единственное, что меняется. Во-первых, если обучение только настраивает эффективность действующих синапсов, нам не следовало бы ожидать крупных перемен в структуре мозга. Однако при его визуализации можно видеть значительные перемены, когда, например, добровольцы в ходе экспериментов учатся жонглировать, студенты-медики готовятся к экзаменам или лондонские таксисты заучивают схему расположения улиц16. Кортикальные изменения не сводятся только к модификации синапсов, а, судя по всему, предполагают добавление нового клеточного материала17.

Во-вторых, если воспоминания просто удерживаются в матрице синаптических весов, у нас нет причин ожидать нейрогенеза, то есть роста и встраивания в систему новых нейронов18. По идее, когда новоиспеченные нейроны, порождаемые гиппокампом, будут втискиваться в сеть, следовало бы ожидать, что они рискуют спутать тонкий синаптический узор. Тем не менее они успешно находят дорогу во взрослую кору. Эти нейроны не лишние, их можно направить на формирование памяти. Например, если тренировать крысу на выполнение задания, требующего участия гиппокампа, число новых нейронов, генерируемых мозгом, удваивается по сравнению с базовым уровнем. И наоборот, если задание не требует участия гиппокампа, число новых нейронов в мозге крысы не изменится19.

В-третьих, в результате колебания уровней сахаров и белков вокруг ДНК изменяются паттерны экспрессии генов20. Исследования в этой относительно новой области — эпигенетике — показывают, что жизненный опыт вносит свои поправки в определение того, какие гены подавляются, а какие усиливаются. В качестве примера отметим, что мышата, воспитывающиеся в благоприятных условиях (мать часто вылизывает их и ухаживает за шерсткой), демонстрируют пожизненные изменения в паттернах молекул, которые прикрепляются к нитям ДНК, что, как выясняется, на всю жизнь снижает тревоги и страхи детенышей, а также повышает заботливость в отношении уже их потомства21. Таким образом ваш жизненный опыт проникает под кожу — и еще глубже, до уровня экспрессии генов, где может встроиться на длительный срок.

Когда нейрофизиологи и разработчики искусственного интеллекта говорят об изменениях в сети, они обычно подразумевают изменения в силе связей между клетками. Однако, на наш свежий дилетантский взгляд, синапсы обречены на недостаточность, потому что пластичность проявляется в мозге на каждом уровне. Характер протекания активности в сетях определяется всеми их настройками, как крупными, так и мелкими. К какой бы части мозга мы ни обратились, пластичность обнаруживается везде. Но тогда почему ученые сосредоточены почти исключительно на синапсах? А потому, что их активность проще всего замерять. Остальные процессы в целом выражены слишком слабо и протекают в мозге слишком стремительно, чтобы современные технологии могли зафиксировать их. По этой причине мы, подобно пьянице, который ищет ключи под фонарем, концентрируем внимание на том, что можем увидеть и измерить.

* * *

Таким образом, в распоряжении мозга множество кнопок, которые он может задействовать, что подводит нас к следующему фрагменту истории: как мозг при наличии стольких настраиваемых параметров умудряется что-либо изменять, не внося сумбур и путаницу во все другие функции? Как осмыслить взаимодействие всех его частей и структур? В чем состоят принципы, посредством которых многие степени свободы не вырываются из-под контроля, а, напротив, поддерживают друг друга в рамках единой системы сдержек и противовесов?

Я предлагаю рассматривать эти вопросы не с позиций биологических особенностей частей мозга, а с позиций временного масштаба, в котором они функционируют. Нашу историю о тайнах изменчивости мозга следует раскрывать не через подробности устройства его механизмов, а через темпы их жизнедеятельности.

Включаем разные временные шкалы

Несколько лет назад американский писатель и футуролог Стюарт Бранд предложил рассматривать цивилизацию как многослойную систему, слои которой функционируют одновременно, но в разном темпе22. Так, мода быстротечна, а промышленные предприятия в какой-либо отрасли меняются значительно медленнее. Инфраструктура — дороги, здания, коммуникации — развивается постепенно. Правила и законы жизни общества — управление — адаптируются очень медленно, защищая нас от ветров перемен. Культура идет вперед по собственному расписанию, опираясь на глубинные основы истории и традиций. Медленнее всего движется природа, отсчитывая свою историю по шкале веков и тысячелетий.

Временные шкалы взаимодействуют, пусть это и не всегда заметно. Слои, живущие более быстрыми темпами, передают накапливающиеся новшества живущим медленнее. Последние, в свою очередь, устраивают слоям-торопыгам проверки на прочность и структурирование. Сила и устойчивость культуры обеспечиваются взаимодействием всех уровней системы (рис. 10.2).