Предполагаю, что и в мозге действует тот же простой принцип. Правда, вместо стремления в места, где больше всего света или пищи, мозг тянется туда, где больше всего информации. Я называю эту стратегию инфотропизмом. Гипотеза инфотропизма предполагает, что нейронная сеть постоянно меняется, подстраивается к окружающей среде, чтобы извлечь и поглотить максимум информации.
В главе 5 мы видели, как мозг научается задействовать органы чувств — неважно, улавливают ли они фотоны, электрические поля или молекулы пахучих веществ. И приводить в движение тело, какими бы двигательными органами оно ни обладало — ногами, плавниками или робоконечностями. В любых заданных условиях мозг тонко настраивает свои нейроны для максимизации поступающих от мира потоков данных. Подстройке содействуют вознаграждения, которые широко транслируются по всей сети, оповещая, что операция по адаптации к изменениям проведена успешно. Таким путем система при минимуме предустановленных программ самостоятельно оптимизирует свое взаимодействие с реальностью.
Например, мы узнали, как формируют сами себя нейронные ландшафты у младенца Хаято из Осаки и у малыша Уильяма из Пало-Альто, что позволяет им различать разные звуки. В главе 6 я иллюстрировал этим примером модификации на основе вознаграждения, но сейчас мы можем расценить это как явление более высокого порядка — инфотропизм: мозг каждого младенца приспосабливался под максимизацию притока данных, значимых в его конкретной реальности.
Если рассматривать это явление в более длительном временн
Приведу пример инфотропизма на уровне нейронов: сетчатка (расположенная на задней стенке глаза) по-разному воспринимает мир в дневное и ночное время. При ярком полуденном свете ей приходится улавливать огромную массу фотонов, и потому каждый рецептор отвечает за свою крошечную точку в общей картине, обеспечивая ей высокую степень разрешения. Ночью зрительная система работает совсем иначе. Фотонов, которые требуется улавливать, мало, поэтому на первый план выходит задача определить, хотя и с малым пространственным разрешением, что где-то тут располагается некий объект. И потому ночью фоторецепторы меняют детали своих внутренних молекулярных каскадов и объединяют усилия. В таких условиях на распознавание близлежащих объектов тратится больше времени, но рецепторы в совокупности способны проявлять б
Подобно тому как растения тянутся к свету, а бактерии — к кусочку сахара, мозг стремится к информации. Он старается непрерывно перенастраиваться, чтобы максимизировать объем данных, извлекаемых из окружающего мира. Ради этого мозг выстраивает внутреннюю модель внешнего мира, которая отражает его ожидания. Если мир ведет себя предсказуемо, мозг экономит энергию. Помните, в главе 1 мы обсуждали футболистов: у любителя во время матча отмечается высокая мозговая активность, тогда как у профессионала — очень малая. Причина в том, что у профессионала предвидения относительно его реальности (футбола) уже вплавлены непосредственно в нейронную сеть мозга, а у любителя подобных предвидений еще не сложилось, он пока только силится составить сколько-нибудь вразумительный прогноз.
Мозг по большому счету есть не что иное, как прогностическая машина, и именно стремление к точным прогнозам служит движущей силой его постоянного изменения. Создавая модель состояния мира, мозг настраивается, чтобы формировать верные ожидания и тем самым максимально обострять чувствительность ко всему неожиданному.
И вот теперь, с учетом уже полученных знаний о мозге, мы готовы изучить следующий вопрос: как все эти процессы протекают на уровне мозговых клеток?
Глава 8
БАЛАНСИРУЯ НА ГРАНИ ПЕРЕМЕН
Представьте, что вы космический пришелец и вас угораздило явиться на планету Земля в октябре 1962 года — в самый разгар Карибского кризиса. Вам как непосвященному простительно считать, что ничего существенного в этом незнакомом мире не происходит. Ваши выпученные инопланетные глаза-окуляры не замечают, чтобы Соединенные Штаты Америки предпринимали что-то особенное, как ничего подобного не предпринимают ни Советский Союз, ни Куба. Деликатно прикрывая зеленой лапкой скучливый зевок, вы, надо думать, делаете вывод, что политическая система на этой планете лишена драйва и апатична, а может, и вовсе закостенела.
Вам, верно, и в голову не придет, что единственная причина всеобщего бездействия в том и состоит, что противоборствующие силы достигли абсолютного взаимного равновесия. Напряжение зашкаливает, стороны уже взаимно нацелили свои ядерные ракеты и привели вооруженные силы в полную боевую готовность.
Хотя аналогию не так-то просто разглядеть, но мозг пребывает в таком же положении. Очень может быть, что его карты неизменны потому, что противовесы абсолютно сбалансированы. Мозг только создает иллюзию безмятежности, однако принципы конкуренции удерживают его на тонкой, как волосок, грани перемен. Не будем обольщаться его внешним спокойствием: нейронные сети мозга только с виду безмятежны, и лишь потому, что все его области замерли в вечном противоборстве холодной войны, напряжены и готовы жестко соперничать за будущий передел границ внутреннего «глобуса».
Два государства — Республика Гаити и Доминиканская Республика — делят между собой территорию острова Гаити в Карибском море. Задумаемся, что случилось бы, если бы на Доминикану обрушился сокрушительный удар цунами и вмиг превратил всю ее территорию в непригодную для жизни. Вариант номер один: Доминиканская Республика исчезла бы с карты мира, а Республика Гаити продолжила бы обычную жизнь. Но есть и второй вариант: гаитяне всей страной ужимаются, отодвигаются на сколько-то сотен километров западнее, а освободившуюся часть своей территории великодушно отдают под поселение доминиканцам (рис. 8.1). В этом случае благодаря соседской щедрости оба государства будут гармонично уживаться в тесноте, но не в обиде.
Рис. 8.1.
Печатается с разрешения автора
Вернемся к мозгу: что будет, если болезнь, хирургическая операция или черепно-мозговая травма приведет к сокращению доступной мозговой территории? Как и в случае со странами-соседями, здесь также возможны два варианта: мозг устранит часть своей карты, отображавшей утраченную мозговую ткань, или ужмет исходную карту, выделив всем областям участки поменьше.
Чтобы разобраться, по какому варианту пойдут события, обратимся к истории маленькой девочки по имени… ну, скажем, Алиса. В три с половиной года у нее начались легкие приступы, и родители отвезли дочку в больницу, где ей провели сканирование мозга. К великому удивлению врачей, а также всего медицинского сообщества, выяснилось, что девочка появилась на свет только с одним полушарием мозга — левым. Это редкая аномалия, при которой правая половина мозга отсутствует1.
Но вот сюрприз: детство у Алисы было самое обычное и вполне нормальное. Как ни поразительно, странная прихоть развития не повредила таких способностей, как координация глаз и движения рук. Приступы у нее случались, но их удавалось купировать при помощи лекарств. И вскоре единственным, в чем выражалось отсутствие правого полушария, остались нарушения мелкой моторики левой руки.