Рис. 4.13.
Ted West / Hulton Archive / Getty Images
Очки излучали в пространство ультразвук. Благодаря очень малой длине волны ультразвук способен дать информацию о мелких объектах, отражаясь от их поверхностей. Электронная начинка очков улавливала отраженные от объектов волны и преобразовывала в звуковые сигналы воспринимаемой человеческим ухом частоты, причем высота звука указывала расстояние до объекта: высокие звуки обозначали объекты, расположенные в отдалении, низкие — находящиеся вблизи. Габариты объекта передавались через силу звука: громкий звук означал, что объект крупногабаритный, негромкий — что мал размерами. Для передачи характера поверхности использовалась чистота звучания: чистый звук означал гладкую поверхность объекта, а если она была грубой и шероховатой, к звукам примешивались шумы. Пользователи устройства научались очень неплохо обходить препятствия, однако ввиду низкого разрешения устройства Кей и его коллеги решили, что их изобретение следует считать скорее помощью, нежели заменой передвижения с собакой-поводырем или с тростью.
Хотя незрячим индивидам акустические очки Кея могли быть разве что умеренно полезны, открытым оставался вопрос, насколько хорошо могли бы обучиться интерпретировать их сигналы незрячие дети, если учесть поразительную пластичность детского мозга. Продуктивность этой идеи в 1974 году решил проверить психолог Томас Бауэр из Калифорнии, взявший для испытаний модифицированную версию очков Кея. В качестве испытуемого был выбран четырехмесячный младенец с врожденной слепотой30. В первый день Бауэр брал предмет и медленно водил им перед носом малыша. Когда он проводил предмет в четвертый раз, глаза ребенка сошлись к переносице, как бывает, если поднести что-то близко к глазам. Бауэр отвел предмет в сторону, и глазки малыша вернулись к нормальному положению. После нескольких циклов такого упражнения младенец при приближении объекта уже поднимал ручонки. Когда находившийся перед ним предмет перемещался вправо или влево, малыш поворачивал вслед за его движением головку и старался ударить по нему ручкой.
В отчете о результатах эксперимента Бауэр упоминает еще несколько форм поведения, отмеченных у маленького испытуемого:
«Младенец с надетым на него устройством лежал лицом к матери, пока та ворковала с ним. Он медленно поворачивал головку в сторону, чтобы удалить ее из звукового поля, затем так же медленно возвращал в прежнее положение, чтобы мать снова оказалась в его звуковом поле. Это действие повторялось несколько раз подряд и сопровождалось широкой, радостной улыбкой ребенка. У всех троих наблюдателей сложилось четкое впечатление, что малыш играет с матерью в своего рода прятки, что доставляет ему огромное удовольствие».
Далее Бауэр сообщает о примечательных результатах, достигнутых в следующие несколько месяцев:
«После этих первоначальных приключений малыш развивался более-менее на одном уровне со зрячими ровесниками. Руководствуясь акустическими подсказками, он, как представлялось, мог узнавать любимую игрушку, не прикасаясь к ней. В возрасте около шести месяцев малыш начал протягивать к предметам обе ручки. А к восьми месяцам уже мог найти предмет, спрятанный за другим предметом. Подобные формы поведения обычно и близко не наблюдаются у младенцев с врожденной слепотой».
Тут вам самое время удивиться, почему вы раньше не слышали, чтобы кто-то пользовался подобным акустическим устройством для слепых. Но, как мы уже видели, технологическое решение имело серьезные недостатки, в частности громоздкость и немалый вес (не такая это была вещь, чтобы, пользуясь ею, ребенок мог расти, не испытывая неудобств), а разрешающая способность оставалась низкой. Кроме того, результаты испытаний акустических очков у взрослых в целом свидетельствовали о меньшем успехе, чем у детей31 (к этой теме мы вернемся в главе 9). Таким образом, хотя сенсорное замещение и прижилось в науке, придется подождать, пока для его продуктивного использования сложится правильная комбинация факторов.
* * *
В начале 1980-х годов нидерландский физик Питер Мейер принял эстафету в разработке теории, рассматривающей ухо как средство трансляции мозгу зрительной информации. Эхолокация его не занимала, зато сильно интересовал вопрос, возможно ли преобразовать в звук входной поток видеоданных.
Мейер знал о работах Бах-и-Риты по преобразованию видеоданных в тактильные ощущения, однако небеспочвенно подозревал, что человеческое ухо наделено большей способностью вбирать и усваивать информацию. Его недостатком в данном контексте выступала меньшая интуитивность преобразования зрительных сигналов в слуховые. При использовании устройства на основе стоматологического кресла Бах-и-Риты формы окружности, лица или человеческой фигуры непосредственно прорисовывались на коже и потому были легко распознаваемы. А как преобразовать в звук сотни пикселей изображения?
Тем не менее к 1991 году Мейер разработал версию системы на персональном компьютере, а к 1999 году сконструировал комплект из встроенной в очки миниатюрной камеры и носимого на поясе компьютера. Свою систему он назвал vOICe: все буквы складывались в слово «голос» (англ.), а три средние служили аббревиатурой возгласа Oh, I see! — «О, я вижу!»32. Заложенный в систему алгоритм обрабатывал звук по трем измерениям: высоту объекта передавала частота, положение в горизонтальной плоскости передавалось панорамированием стереовхода (представьте, что звук перемещается из левого уха в правое, как если бы вы скользили взглядом, разглядывая картину или сценку), о яркости объекта давала представление сила звука. Система позволяла получить визуальное представление об объекте в градациях серого цвета с разрешением порядка 60 × 60 пикселей33.
Попробуем представить опыт эксплуатации таких очков. Сначала мы слышим лишь какофонию звуков. Затем, двигаясь по помещению, — чуждые уху бессмысленные жужжания и завывания. Через некоторое время мы начинаем соображать, как руководствоваться этими звуками, чтобы перемещаться, не налетая на предметы. На данной стадии приходится выполнять когнитивное упражнение: мы с мучительным трудом учимся переводить хаос из разрозненных звуков в подсказки для успешного перемещения.
Важные перемены происходят чуть позже. По прошествии недель или месяцев незрячие пользователи vOICe осваиваются и начинают передвигаться вполне успешно34, но не потому, что запомнили значение того или иного звука, — напротив, теперь слепые могут в некотором смысле
«Недели за две-три у тебя развивается представление о звуковом ландшафте. Примерно месяца через три или около того ты начинаешь видеть нечто вроде вспышек в окружающей обстановке и уже можешь различать предметы, просто глядя на них… Это в общем-то зрение. Я знаю, что такое зрение. Я помню, каково это»36.
Решающее значение имеет непрерывная неукоснительная тренировка. Как и в случае с кохлеарными имплантатами, могут потребоваться многие месяцы, прежде чем мозг приспособится извлекать смысл из звуковых сигналов устройства. К этому моменту изменения в мозге уже измеримы методом нейровизуализации. Вполне определенный участок (латеральная затылочная кора) в норме реагирует на информацию о форме предметов, и неважно, определяется ли она зрением или осязанием. После нескольких дней ношения очков этот участок коры начинает реагировать на звуковой ландшафт37. Рост эффективности пользования устройством происходит параллельно с масштабами церебральной реорганизации38.
Иными словами, мозг придумывает, как извлечь информацию о форме предметов из входных сигналов, по каким бы проводящим путям — через зрение, осязание или слух — они ни поступали в его святая святых. Какой именно орган чувств посылает их — второстепенная подробность. Самое главное — поступающая в мозг информация.
В первые годы XXI века ряд исследовательских лабораторий начали использовать широкие возможности мобильных телефонов и принялись разрабатывать мобильные приложения, преобразующие входящие визуальные данные в исходящие аудиоданные. Незрячие люди направляют камеру телефона на пространство перед собой, а приложение преобразует зрительную картину в звуковую и транслирует им в наушники. Приложение vOICe, например, можно бесплатно скачать на мобильник в любой точке мира.