Книги

Тайны чисел: Математическая одиссея

22
18
20
22
24
26
28
30

Какое из этих чисел будет кодом книги: 0521447712 или 0521095788?

Я уверен, что вы видели ISBN, Международный стандартный книжный номер (International Standard Book Number), на обложке каждой книги. Его 10 цифр однозначно идентифицируют книгу, а также сообщают о стране происхождения и об издательстве. Но это отнюдь не все, что делает код. В ISBN также встроено немного магии.

Скажем, я хочу заказать книгу и знаю ее ISBN. Я печатаю номер, но из-за спешки допускаю ошибку. Вы могли бы подумать, что у меня окажется не та книга, но этого не произойдет, потому что у ISBN есть поразительное свойство: эти номера могут детектировать ошибки внутри самих себя. Давайте я покажу, как это получается.

Вот подлинные ISBN некоторых моих любимых книг:

Таблица 4.05

Под каждой цифрой я привел результат умножения на ее порядковый номер в коде. Так, в первом ISBN 0 умножается на 1, 5 на 2, 2 на 3 и т. д. Затем я сложил все новые числа и написал полученную сумму в конце строки. Вы заметили особенность чисел, приготовленных по этому рецепту из ISBN? А вот результат вычислений с использованием некоторых других настоящих ISBN: 264, 99, 253.

Вы подметили закономерность? Расчет всегда приводит к числу, которое делится на 11. Это не чудесное совпадение, а следствие искусного математического замысла. Информация о книге содержится только в первых девяти цифрах. А десятая цифра добавляется в ISBN таким образом, чтобы результат вычислений по данному рецепту был кратен 11. Вы могли заметить, что у некоторых книг на последней позиции находится Х вместо арабской цифры. Например, у другой моей любимой книги следующий ISBN: 080501246X. X просто обозначает 10 (вспомните римские числа). В этом случае потребовалось дописать 10 в конец ISBN, чтобы результат вычисления делился на 11.

Ошибись я в одной из цифр при вводе ISBN, вычисление привело бы к результату, который не делится на 11. В таком случае компьютер будет знать, что я допустил ошибку, и мне будет предложено ввести ISBN еще раз. Даже если я переставлю местами две цифры – а люди часто допускают подобную ошибку, когда набирают номер, – то компьютер не даст команду послать мне неверную книгу, а попросит меня ввести правильный ISBN. Придумано довольно умно. Теперь вы можете проверить номера в заголовке этого раздела, чтобы определить, какой из них является настоящим ISBN, а какой – самозванцем.

Поскольку книги продолжают издаваться в больших количествах, номера ISBN начали заканчиваться. Поэтому было решено, что с 1 января 2007 г. в ISBN будет 13 цифр. 12 из них по-прежнему идентифицируют книгу, издателя и страну происхождения, а тринадцатая будет отслеживать, не вкрались ли ошибки. Но ключевым для номера ISBN теперь является делимость на 10, а не на 11. Найдите номер ISBN этой книги. В нем 13 цифр. Сложите 2, 4, 6, 8, 10 и 12-ю цифру, а сумму умножьте на 3. Теперь прибавьте к промежуточному результату все остальные цифры. Итоговый результат будет делиться на 10. Если же вы сделали ошибку при записи номера ISBN, то у вас, скорее всего, получится число, которое не делится на 10.

Как использовать коды для чтения мыслей

Для того чтобы показать этот фокус, вам понадобится 36 монет. Дайте вашему ничего не подозревающему другу 25 монет и попросите его расположить их на сетке 5 × 5 со случайным распределением орлов и решек. Он, к примеру, мог бы расположить монеты так:

Таблица 4.06

Потом вы говорите: «Через минуту я попрошу тебя перевернуть одну из монет, после чего я прочитаю твои мысли и скажу, какую именно ты перевернул. Ты можешь решить, что я могу запомнить порядок 25 монет, поэтому давай сделаем мою задачу еще более сложной и увеличим квадрат».

Затем вы добавляете монеты, создав дополнительный ряд и столбец, так что получается сетка 6 × 6. На первый взгляд вы распределяете орлы и решки случайно… хотя на самом деле это вовсе не так. Вы считаете, сколько решек имеется в каждом ряду и каждом столбце начиная с первого столбца. Если в первом столбце нечетное число решек, то положите дополнительную монету в первом столбце решкой вверх. Если же число решек четно (0 считается четным числом), то положите дополнительную монету в конец первого столбца вверх орлом.

Сделайте то же с каждым столбцом и затем добавьте монету в конец каждого ряда, используя прежний критерий. Теперь в правом нижнем углу появится ячейка, которую необходимо заполнить для завершения квадрата. Положите монету вверх орлом или решкой в зависимости от того, четное или нечетное число решек в столбце над этим углом. Интересно, что это также зафиксирует четность или нечетность числа решек в дополнительном нижнем ряду. Вы можете доказать, что это всегда так? Прием состоит в том, чтобы заметить, что это число говорит вам, четно или нечетно количество решек во всей сетке 5 × 5.

Как бы то ни было, сетка теперь будет выглядеть следующим образом:

Таблица 4.07

И вы готовы показать фокус. Повернитесь спиной и попросите вашего друга перевернуть какую-либо монету. Когда это сделано, снова повернитесь лицом к монетам. Сосредоточьтесь на сетке и объявите, что вы намерены прочитать мысли друга и идентифицировать перевернутую монету.

Разумеется, вы вовсе не читаете мысли вашего друга. Вы возвращаетесь к исходному квадрату 5 × 5 и считаете орлы и решки в каждом ряду и столбце. Вы проверяете четность числа решек и сопоставляете ее с добавленным вами орлом или решкой, указывающими на четность в каждом столбце или ряду. Если ваш друг перевернул одну из монет на сетке 5 × 5, то будет один ряд и один столбец, где показания добавленных вами монет будут неправильными. Посмотрите на место пересечения этих ряда и столбца – лежащая там монета и была перевернута.

Теперь вы, скорее всего, сумеете определить, какая монета была перевернута на данной сетке: