Книги

Танец жизни. Новая наука о том, как клетка становится человеком

22
18
20
22
24
26
28
30

[3] Florence Wianny, Magdalena Zernicka-Goetz. Specific Interference with Gene Function by Double-Stranded RNA in Early Mouse Development. Nature Cell Biology 2 (1999): 70—75.

[4] H. Bolton, S. J. L. Graham, N. Van der Aa, P. Kumar, K. Theunis,

E. Fernandez Gallardo, T. Voet, M. Zernicka-Goetz. Mouse Model of Chromosome Mosaicism Reveals Lineage-Specific Depletion of Aneuploid Cells and Normal Developmental Potential. Nature Communications 7 (2016): 11165. Doi:10.1038/ncommsl 1165.

[5] Maria-Elena Torres-Padilla, David-Emlyn Parfitt, Tony Kouzarides, Magdalena Zernicka-Goetz. Histone Arginine Methylation Regulates Pluripotency in the Early Mouse Embryo. Nature 445 (2007): 214—218. Doi:10.1038/nature05458.

Глава 9. Как синтезировать эмбрион

[1] С. R. Woese. A New Biology for a New Century. Microbiology and Molecular Biology Reviews 68. No. 2 (2004): 173-186.

[2] Leroy C. Stevens Jr., С. C. Little. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. Proceedings of the National Academy of Sciences 40 (1954): 1080-1087.

[3] L. C. Stevens. Embryonic Potency of Embryoid Bodies Derived from a Transplantable Testicular Teratoma of the Mouse. Developmental Biology 2 (1960): 285-297.

[4] G. B. Pierce, F. J. Dixon. Testicular Teratomas. I. Demonstration of Teratogenesis by Metamorphosis of Multipotential Cells. Cancer 12 (1959): 573-583.

[5] Martin Evans. Origin of Mouse Embryonal Carcinoma Cells and the Possibility of Their Direct Isolation into Tissue Culture. Journal of Reproduction and Fertility 62 (1981): 625—631, https://doi.org/10.1530/ jrf.0.0620625.

[6] M. J. Evans, M. FI. Kaufman. Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 292 (1981): 154—156.

[7] G. R. Martin. Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proceedings of the National Academy of Sciences 78. No. 12 (1981): 7634-7638.

[8] D. ten Berge, W. Koole, C. Fuerer, M. Fish, E. Eroglu, R. Nusse. Wnt Signaling Mediates Self-Organization and Axis Formation in Embryoid Bodies. Cell Stem Cell 3. No. 5 (2008): 508-518. Doi: 10.1016/j. stem.2008.09.013.

[9] I. Bedzhov, M. Zernicka-Goetz. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation. Cell 156 (2014): 1032-1044. Doi: 10.1016/j.cell.2014.01.023.

[10] Ibid.

[11] Susanne C. van den Brink, Peter Baillie-Johnson, Tina Balayo, An-na-Katerina Fladjantonakis, Sonja Nowotschin, David A. Turner, Alfonso Martinez Arias. Symmetry Breaking, Germ Layer Specification and Axial Organisation in Aggregates of Mouse Embryonic Stem Cells. Development 141 (2014): 4231—4242. Doi:10.1242/dev.l 13001.

[12] D. ten Berge, W. Koole, C. Fuerer, M. Fish, E. Eroglu, R. Nusse. Wnt Signaling Mediates Self-Organization and Axis Formation in Embry oid Bodies. Cell Stem Cell 3. No. 5 (2008): 508-518. Doi: 10.1016/j. stem.2008.09.013.

[13] R. S. Beddington, P. Rashbass, V. Wilson. Brachyury — A Gene Affecting Mouse Gastrulation and Early Organogenesis. Development Supplement (1992): 157-165.

[14] S. E. Flarrison, B. Sozen, N. Christodoulou, C. Kyprianou, M. Zernicka-Goetz. Assembly of Embryonic and Extraembryonic Stem Cells to Mimic Embryogenesis In Vitro. Science 356 (2017): eaall810. Doi: 10.1126/science.aall810.

[15] N. C. Rivron, J. Frias-Aldeguer, E. J. Vrij, J.-C. Boisset, J. Korving, J. Vivid, R. K. Truckenmiiller, A. van Oudenaarden, C. A. van Blit-terswijk, N. Geijsen. Blastocyst-Like Structures Generated Solely from Stem Cells. Nature 557 (2018): 106-111. Doi: 10.1038/s41586-018-0051-0.

[16] B. Sozen, G. Amadei, A. Cox, R. Wang, E. Na, S. Czukiewska, L. Chappell, T. Voet, G. Michel, N. Jing, D. M. Glover, M. Zer-nicka-Goetz. Self-Assembly of Embryonic and Two Extra-Embryonic Stem Cell Types into Gastrulating Embryo-Like Structures. Nature Cell Biology 20 (2018): 979-989. Doi: 10.1038/s41556-018-0147-7.