Итак, Антарктида работает как мощная морозильная камера. Казалось бы, за миллион лет она должна была уже заморозить всю Землю. Почему же этого не случилось? Ответ на вопрос может дать обыкновенная географическая карта. Видно, что на поверхности планеты шестой континент занимает весьма скромную площадь. Во всяком случае, намного меньше территории тропиков, куда Солнце непрерывно выбрасывает огромное количество тепла. Это тепло и согревает Мировой океан. И хотя его теплые течения не могут пробиться к Антарктиде, за пределами кольца он парирует ее холодное дыхание. Словом, по логике вещей между океаном и Антарктидой должно существовать равновесие. Что же тогда служит причиной изменения климата?
Может быть, это подземные озера, ослабляющие сцепление ледяного панциря с его ложем. В ходе их роста и происходит периодический сброс айсбергов в океан. В результате образуются обширные пространства, отражающие солнечные лучи, температура понижается, и в Южном полушарии возникают центры охлаждения атмосферы…
Последние исследования шестого континента предлагают парадоксальный сценарий глобального потепления, плавно переходящего в глобальное похолодание, ведь увеличение ледосброса вызовет резкое похолодание. Но в одном гипотезы потепления и похолодания совпадают: в любом случае быстрое таяние льдов приведет к значительному повышению уровня Мирового океана…
Великий русский ученый Ломоносов писал: «Человеку ничего не осталось бы требовать от Бога, если бы он научился правильно предсказывать погоду». К сожалению, проблема долговременных метеопрогнозов до сих пор не решена. Причем если для суточного метеопрогноза достаточно региональных метеоданных, то для недельной картины климатических изменений уже требуются сведения о глобальном состоянии всей атмосферы планеты. Если учесть, что большая часть поверхности Земли занята океанами, то наиболее эффективным средством сбора оперативной информации, конечно же, становятся метеоспутники. Именно поэтому так важен международный орбитальный патруль погоды, оснащенный телевизионной аппаратурой, передающей изображения поверхности и атмосферы во всех диапазонах. Анализ глобального распределения облачности позволяет видеть струйные течения, атмосферные фронты, скопления кучевых облаков и, самое главное, вовремя определять центры зарождения ураганов и тайфунов.
Анализ телевизионных инфракрасных изображений облачного покрова позволяет оценивать погодные условия скорости восходящих и нисходящих потоков воздуха и направление ветров. Климатологам также важно знать температуру земной поверхности, морей и океанов, а также тропосферы (нижних слоев атмосферы) над ними.
Оборудование метеоспутников включает и приборы для измерения отраженной земной поверхностью энергии, ведь главный источник тепла на нашей планете – солнечная радиация. Составляя тепловой баланс Земли, ученые не только определяют закономерности крупномасштабных атмосферных процессов, но и открывают новые факты об активности нашего светила, изменения солнечной постоянной. Оказалось, что климатологи до сих пор недооценивали величину поглощаемой солнечной радиации, избыток которой «усваивается» Мировым океаном.
Термическое зондирование атмосферы со спутников, однако, отнюдь не просто, даже математически. Здесь мы сталкиваемся с классом некорректных задач, не имеющих однозначного решения, трудности можно преодолеть только с помощью мощнейших вычислительных комплексов.
Важная составная часть программы исследований атмосферы из космоса – определение вертикального профиля концентрации аэрозоля (пылевых частиц) в атмосфере. Известно, например, что загрязнение атмосферы после вулканических извержений всегда приводило к значительному уменьшению эффективности солнечной радиации на земной поверхности и заметному изменению теплового режима атмосферы.
Не менее важную роль играют и спутниковые «медицинские» карты климатических изменений, ведь еще в глубокой древности было замечено влияние климата и погоды на течение многих, особенно сердечно-сосудистых, заболеваний. Впрочем, каждый из нас может привести множество примеров в подтверждение того, как меняется самочувствие при резком похолодании или, скажем, перед грозой.
Живая и мертвая, тяжелая и легкая
Вода – самое распространенное и в то же время самое ценное «ископаемое минеральное вещество» на нашей планете со столь на первый взгляд простым химическим строением и столь непростыми свойствами. В отличие от других аналогичных соединений вода имеет много аномалий. К ним относятся необычно высокая температура кипения и теплота парообразования. Вода характеризуется высокой теплоемкостью, которая позволяет использовать ее в качестве теплоносителя в теплоэнергетических установках. В природе это свойство проявляется в смягчении климата вблизи больших водоемов. Необычно высокое поверхностное натяжение воды обусловило ее хорошую способность смачивать поверхности твердых тел и проявлять капиллярные свойства, т. е. способность подниматься вверх по порам и трещинам пород и материалов вопреки земному притяжению.
Вспомним, какую большую роль играет гидросфера в формировании поверхности нашей планеты. Но кроме всесокрушающих водных потоков здесь действует еще и «физика фазовых превращений», ведь именно свойство воды увеличиваться в объеме при замерзании ведет к разрушению горных пород. Попадая в мельчайшие трещины скал и там замерзая, вода действует подобно взрывчатому веществу: образующемуся льду тесно в небольших трещинах и он разрушает камень.
Почему вода жидкая? Почему она может течь, литься, капать? Все дело в ее структуре. Жидкость – промежуточное состояние, в котором вещество уже лишено строгой упорядоченности твердого кристалла, но полного хаоса, присущего газообразному состоянию, в его структуре еще нет. В жидкостях соблюдается лишь ближний порядок: на небольших расстояниях частицы расположены более или менее «стройно», но по мере их удаления друг от друга этот порядок исчезает. Средние расстояния между частицами этого ближнего порядка задаются силами межатомного или межмолекулярного взаимодействия. В воде, например, атомы водорода одной молекулы притягиваются к атомам кислорода другой и т. д. Именно эта чрезвычайно развитая сеть водородных связей и придает воде многие поистине уникальные свойства, позволяя, в частности, говорить, что структура этой жидкости в чем-то сродни структуре кристалла.
Ученые выяснили, что если в свободном объеме вода как бы сама себе задает структуру, то при соприкосновении с твердой поверхностью структура последней начинает «навязываться» граничащему с ней слою жидкости толщиной от 10 до 100 ангстрем (ангстрем равен одной десятимиллионной доле сантиметра). Коль скоро структура этого граничного слоя воды оказывается измененной, иными становятся и его физико-химические свойства, в частности вязкость и способность растворять вещества.
Граничный слой воды с измененными свойствами существует, естественно, лишь в зоне, близкой к твердой поверхности. Однако представим, что вода находится в очень тонком капилляре – тоньше самого граничного слоя. И тогда окажется, что вся жидкость в капилляре уже не та, какой она была в свободном объеме. То же самое произойдет, если жидкостью пропитать какое-либо пористое вещество. Но ведь пористые вещества, пропитанные жидкостями, встречаются буквально на каждом шагу. Это и почва, и различные строительные материалы. И во всех этих пористых материалах вода, как выяснилось, имеет вовсе не те свойства, каких от нее следовало бы ожидать.
Одна из серьезнейших проблем, стоящих перед человечеством, – дефицит пресной воды. В разработке экономических методов опреснения морской воды российские специалисты достигли значительных успехов. В частности, среди этих методов весьма перспективным оказалось использование так называемых мембранных фильтров. Суть проста: морская вода продавливается сквозь мембрану, не пропускающую растворенные соли. И в этом «сите», способном отделять ионы от молекул воды, главную роль играют как раз особые свойства граничного слоя.
Французские гидрофизики предложили оригинальный способ за несколько минут перевести воду в твердое состояние, не меняя ее химического состава. С помощью открытого ими полимера можно получить воду, напоминающую по структуре затвердевшее желе.
Такое желе, названное акваблок, не испаряется даже при сравнительно высокой температуре воздуха. Его можно использовать для водоснабжения в засушливых и пустынных районах Африки. Срок хранения акваблока не ограничен. Достаточно добавить немного воды – и желе сразу перейдет в жидкое состояние. Перевозить же акваблоки можно даже самосвалами.