Двигатель ОР-1 сначала работал на бензине, а затем инженеры подключили подачу магния. Двигатель заглох тут же. Оказывается, крупинки металла начали спекаться друг с другом еще до попадания в камеру сгорания двигателя. Инженеры пытались реализовать несколько идей, чтобы решить проблему: подбирали размеры трубок подачи, делали изоляцию от высоких температур и т. д., но все попытки оказались безуспешными.
Еще один вариант топлива стоил водителю Гудкову, который отвозил инженеров на площадку, новых штанов. Он не имел инженерного образования, но двигателями интересовался. А что может быть необычнее реактивного двигателя, особенно в 30-е годы ХХ века? Однако любознательному водителю никто ничего не рассказывал. Все инженеры были заняты. Однажды Гудков уселся на скамейку на полигоне и почувствовал жжение. Он резко встал и обнаружил, что его штаны в нескольких местах дырявые и дымятся. Первая его реакция – ладонями бить по пятой точке, стараясь остановить тление одежды. Дело было в крошках фосфора. На открытом воздухе это вещество самовоспламеняется. Его закладывали в ракету, предварительно заливая лаком. При пуске двигателя ракет специальный металлический ежик сдирал защитную пленку, и фосфор начинал гореть. Такой механизм использовали в первом прямоточном реактивном двигателе в СССР. Как раз на крошки, которые остались после заправки, и сел наш герой. Последствий для здоровья водителя не было, пострадали только штаны. Сергей Павлович пообещал: «Компенсируем твою производственную потерю».
В итоге еще на ранних этапах ракетостроения по заветам Циолковского Советский Союз не возлагал больших надежд на твердое топливо. Хотя в стране и велись разработки, в том числе твердотопливных боевых ракетных комплексов, они всегда сопровождались проблемами и кучей ошибок. Так, например, у ракеты РТ-1 был только один успешный пуск. Твердотопливные элементы (их называют шашками) сильно подвержены любому внешнему воздействию. Любое растрескивание, попадание пыли или влаги, нерасчетное давление может вызвать аварию. Кроме того, в ракете использовалось несколько плотно уложенных небольших шашек. Если бы между ними появился зазор, то и это привело бы к нестабильному горению и взрыву. Ракета РТ-2 оказалась более надежной, ее даже поставили на боевое дежурство. Правда, даже когда в сети электропитания были незначительные скачки напряжения, с дежурства РТ-2 на всякий случай снимали.
В США к твердому топливу относились куда более благосклонно. Самая массовая ракета заокеанских военных «Минитмен» использует в качестве горючего алюминий, а в качестве окислителя – перхлорат аммония. В камере сгорания вместо нескольких шашек размещается одна большая, а в ней – одно просверленное в виде звезды отверстие. Таким образом решалось сразу несколько проблем: во-первых, со стабильностью горения, а во-вторых – с контролем работы. Это было достижением британских химиков, которые смогли разработать материал, позволивший связывать взрывоопасные вещества и лепить из них большие шашки.
Хотя новая технология была на две головы выше предыдущих, все равно при использовании твердого топлива требовался особый контроль. Несоблюдение определенных мер при работе с твердым топливом послужило причиной катастрофы шаттла «Челленджер» в 1986 году. В назначенный день старта специалисты, отвечающие за боковые ускорители, отказались подписать допуск изделия на старт. Дело в том, что температура на улице была неестественно низкой для южного штата Флорида, а именно –6 °C. Химики не могли дать гарантий, что твердое топливо и системы ускорителя будут безопасны. Минимальная допустимая температура должна быть не ниже +11 °C. Перед этим событием запуск «Челленджера» несколько раз откладывался. Дальше переносить было уже очень дорого, да и сроки поджимали. Под нажимом специалисты по ускорителю сдались и дали добро на старт при температуре выше 0 °C, чтобы хотя бы лед и иней растаяли. Ближе к середине дня воздух прогрелся до +2 °C и была дана команда к старту.
Почти сразу что-то пошло не так. Из стыка между блоками правого ускорителя пошли клубы дыма неестественного серого цвета – видимо, горело то, что гореть не должно. Тем не менее достаточно быстро ситуация нормализовалась. Но когда шаттл пролетал самый сложный участок атмосферы, где на конструкцию оказывается самое сильное влияние воздуха, из ускорителя в области стыка пошло пламя. Оно прожгло корпус ускорителя и корпус соседнего бака с жидким водородом. Тот в свою очередь тоже стал гореть. Вся конструкция шаттла из-за появления боковой силы стала терять равновесие и крениться. В конце концов ускоритель отвалился от остальной части «Челленджера» и пробил бак с водородом. Произошел взрыв.
Лед и боковой ускоритель перед стартом.
Причиной трагедии стало маленькое уплотнительное кольцо между блоками ускорителя. От холода оно сжалось, и появился зазор, который в свою очередь привел к прогоранию и последующим печальным событиям. Стоит отдельно упомянуть еще одну серьезную проблему. Дело в том, что от взрыва экипаж не погиб. Однако никакой аварийной системы спасения у астронавтов не было. Двигатели, которые еще работали, отбросили кувыркающуюся кабину с астронавтами. Шаттл продолжал падать, разрушаясь от потоков воздуха. Обломки и кабина с людьми рухнули в воду с высоты 20 км. Если бы у экипажа была возможность выбраться или у кабины был бы парашют, жертв можно было бы избежать.
Сроки, что стояли в графике полета шаттлов, которые руководители программы так боялись сбить, были сдвинуты почти на два года. За это время инженерами была разработана система спасения, но, как позже оказалась, спасти она могла далеко не всегда.
Вернемся к кислороду. Для любой химической реакции требуется два вещества. В качестве окислителя для костров, печей, газовых плит, оружия, двигателей внутреннего сгорания и т. д. издавна используется кислород, пусть и неосознанно. Правда, в воздухе это газ, а в ракете он должен быть жидким. Первая проблема – а как его добыть? В атмосфере его полно – 21 %. Берем воздух и охлаждаем его до –183 °C. Все остальное, что успело стать жидким при более высокой температуре, убираем, и у нас остается жидкий кислород.
В 1933 году пуск ракеты с индексом 26 оказался неудачным. При получении кислорода инженеры допустили охлаждение до более низкой температуры (–195 °C), из-за чего стал жидким не только кислород, но и остальные газы, в первую очередь молекулярный азот, который является достаточно инертным веществом и очень плохо вступает в химические реакции. Причем азота в атмосфере гораздо больше, чем кислорода. На жидком воздухе ракета полететь, разумеется, не захотела. Похожая история происходила и в более поздние времена. Так, во время третьей попытки выполнить испытательный пуск знаменитой ракеты-носителя Р-7 («Семёрки»), которая позже запустит первый в мире спутник, кислород тоже не был чистым, однако на этот раз по другой причине. Перед стартом осуществляется продувка двигателя азотом. Это позволяет инженерам быть уверенными, что в трубопроводах нет препятствий для движения топлива. Это было важно, так как в предыдущей попытке один из клапанов банально замерз. В нем образовалась ледяная пробка. Поток азота, если такие заторы образовались в двигателе, пробил бы их или дал информацию о наличии проблемы. Плохая продувка также не раз становилась причиной аварий ракет-носителей, но в предыдущем испытании такая проверка смогла обнаружить ошибку еще до печальных последствий.
После продувки инертный газ должен был полностью выйти и больше не поступать, но из-за неверно установленного клапана азот шел в двигатель, когда его запустили. Горючее вступать в химическую реакцию с кислородом при наличии азота не стало. Ракета-носитель осталась без движения на стартовом столе.
Если же кислород стал газом и на его пути появляется любое вещество, способное гореть, то последствия могут оказаться очень серьезными. Так, самая большая трагедия космодрома Плесецк произошла в 1980 году. Тогда ракета-носитель «Восток-2М» загорелась в процессе подготовки к старту. На самом деле при расследовании причин аварии было выдвинуто две версии. В одной из них, ставшей официальной, утверждается, что боевой расчет, который готовил ракету-носитель, обнаружил течь в трубопроводе с жидким кислородом. Чтобы устранить неисправность, один из солдат выбрал дедовский способ – обмотать место течи мокрой тканью. Холодный кислород быстро превращает воду в лед, который и не дает выходить кислороду дальше. С учетом того, что ледяные пробки ранее доставляли огромные проблемы в тех местах, где окислитель должен был проходить, это решение вполне разумное. Известны даже случаи, когда инженеры поступали так же. Вот только если кислород найдет лазейку и сможет в виде газа проходить сквозь заплатку, быть беде. В таком случае ткань станет фитилем для пламени.
Другая версия тоже связана с химической реакцией. В качестве топлива для турбины двигателя используется пероксид водорода. Он разлагается за счет каталитической реакции на кислород и воду, а кислород в свою очередь используется как окислитель для запуска ракетного двигателя. Для запуска такой реакции разложения перекиси водорода используется катализатор, в качестве которого можно использовать, например, свинец. Этот же материал часто используют в качестве припоя, но не в ракетной технике. Вторая версия аварии предполагает, что в одном из фильтров, которые используются для очищения топлива при заправке, чтобы в двигатель не попало ничего горючего, как раз был припой не из чистого олова, а более дешевый, со свинцом. В итоге началась химическая реакция с пероксидом водорода, а грязь на фильтре спровоцировала взрыв.
Хотя вторая версия не являлась официальной в 1980 году, сейчас она считается основной. Основанием стал инцидент, который произошел через год. Тогда тоже из-за некачественного фильтра началась реакция разложения в ходе подготовки ракеты-носителя к старту, но в этот раз командный расчет это быстро заметил и успел предпринять действия для устранения угрозы возгорания.
Двигатель РД-108, используемый в ракете-носителе Р-7
На Байконуре в 1963 году также произошел трагический случай из-за того, что солдаты плохо проветрили пусковую установку. Баллистическая ракета Р-9А была создана таким образом, чтобы ее можно было запускать не только с поверхности Земли, но и из скрытых шахт. В одной из таких шахт под названием «Десна-В» боевой расчет стал обучаться технологии обслуживания, подготовки и заправки ракеты. Военные на скорость провели подготовку и заправку учебной версии Р-9А жидким кислородом и керосином. Тренировка прошла успешно, однако по неаккуратности горючие материалы могли расплескаться, пусть и в небольшом количестве. На следующий день группа химиков направилась в шахту для исследования содержания горючих материалов. Однако в силу поджимающих сроков к работе приступили и несколько боевых расчетов, не дожидаясь разрешения. Казалось, что все прекрасно, дышалось легко и свободно, несмотря на то что трудиться приходилось под землей. Как раз именно это могло насторожить солдат, но обычно мысль проветрить приходит в голову, когда кислорода мало, а не много. По расчетам химиков в день аварии в шахте содержание газа составляло 31 % вместо положенных 21 %. Один из военнослужащих заметил, что лампа освещения перегорела, и решил поменять ее. Возникла искра, загорелись провода и одежда солдата. О пожаре было доложено по уставу. Согласно инструкции несколько военнослужащих отправились проводить эвакуацию и ликвидировать возгорание на единственном средстве погружения в шахту – лифте. Также по другой инструкции перед тушением электропроводки требуется отключение электричества. Выполняя ее, электрики обесточили не только этаж, где было возгорание, но и всю шахту, в том числе лифт. Тем самым был отрезан единственный путь наружу. После этого случая инженерами была инициирована работа по созданию средств автоматического контроля загазованности и появились более четкие правила безопасности для персонала.
Самая большая проблема, связанная с жидким кислородом, – его хранение. Рано или поздно он нагреется. В поисках другого окислителя инженеры решили использовать оксиды азота, самым подходящим из которых был тетраоксид азота. Он при комнатной температуре жидкий, но его легко и испарить. Также это вещество в ходе реакции горения выделяет много энергии. Другой оксид азота, который называют закись азота, часто используют гонщики для ускорения своих машин. Это вещество чуть хуже, так как для того, чтобы оно было жидким, также требуется охлаждение.
Есть и минусы. Тетраоксид азота крайне токсичен и химически активен. Сначала инженеры в рамках испытаний добавляли этот окислитель в жидкий кислород. Получалось весьма неплохо, но стенки двигателя от агрессивного вещества быстро приходили в негодность.
Это вещество используется и сейчас, особенно в тех случаях, когда нужно хранить топливо долго, например, в двигателях системы ориентации, двигателях для межпланетных миссий, в двигателях, которые используются для посадки, в двигателях ракет, стоящих на боевом дежурстве. Неаккуратное обращение с этим окислителем приводит к серьезным последствиям.