Книги

Наука о данных. Базовый курс

22
18
20
22
24
26
28
30

1. Если отклонение равно 0, не меняйте веса на входах.

2. Если отклонение положительное, требуется увеличить прогнозное значение, поэтому нужно прибавить веса всех связей с положительным входом и понизить веса связей с отрицательным.

3. Если отклонение отрицательное, требуется уменьшить прогнозное значение, поэтому нужно понизить веса всех связей с положительным входом и прибавить веса связей с отрицательным.

Сложность обучения нейронной сети состоит в том, что правило обновления веса требует оценки ошибки в нейроне, и, хотя вычислить ошибку для каждого нейрона в выходном слое сети довольно просто, сделать то же самое для нейронов в более ранних слоях намного сложнее. Стандартный способ обучения нейронной сети заключается в использовании алгоритма, называемого методом обратного распространения ошибки. Алгоритм обратного распространения является алгоритмом машинного обучения с учителем, поэтому он предполагает набор обучающих данных, который бы имел как входные значения, так и целевой атрибут для каждого объекта. Обучение начинается с назначения случайных весов каждой связи в сети. Затем алгоритм итеративно обновляет весовые коэффициенты, показывая сети обучающие объекты из набора данных и обновляя весовые коэффициенты до тех пор, пока сеть не начнет работать как ожидалось. Алгоритму присваивается имя, потому что после того, как каждый обучающий объект представлен сети, ее веса обновляются путем последовательных шагов в направлении назад по сети:

1. Рассчитайте ошибку для каждого из нейронов в выходном слое и обновите согласно правилу веса входящих связей этих нейронов.

2. Поделитесь ошибкой, рассчитанной для нейрона, с каждым из нейронов в предыдущем слое, который связан с ним, пропорционально весу связей между двумя нейронами.

3. Для каждого нейрона на предыдущем уровне вычислите общую ошибку сети, за которую он ответственен, суммируя с теми ошибками, которые были переданы обратно в него, и используйте результат этого суммирования, чтобы обновить веса на связях, входящих в этот нейрон.

4. Пройдите таким же образом остальные слои в сети, повторяя шаги 2 и 3 до тех пор, пока веса между входными нейронами и первым слоем скрытых нейронов не будут обновлены.

При обратном распространении ошибки вес, обновляемый для каждого нейрона, высчитывается так, чтобы уменьшить, но не устранить полностью ошибку нейрона в обучающем экземпляре. Причина этого заключается в том, что цель обучения сети — дать ей возможность сделать выводы, которых нет в данных обучения, а не просто запомнить эти данные. Таким образом, каждое обновление весов продвигает сеть к такому их набору, который лучше всего подходит к набору данных, и на протяжении многих итераций сеть постепенно сужает значения весов в наборе, которые учитывают общее распределение данных больше, чем характеристики обучающих объектов. В некоторых версиях обратного распространения ошибки веса обновляются только после того, как несколько объектов (или пакет объектов) были представлены сети, а не после ввода каждого обучающего объекта. Единственная настройка, необходимая для этого, заключается в том, чтобы алгоритм использовал среднюю ошибку сети для этих объектов в качестве меры ошибки на выходе для процесса обновления веса.

Одним из наиболее удивительных технических достижений последних 10 лет стало появление глубокого обучения. Сети глубокого обучения — это те же нейронные сети, имеющие несколько[19] слоев скрытых юнитов, — другими словами, они глубоки с точки зрения количества скрытых слоев. Нейронная сеть на рис. 15 имеет пять слоев: один входной, три скрытых (черные кружки) и один выходной слой справа, содержащий два нейрона. Эта сеть иллюстрирует то, что в каждом слое может быть разное количество нейронов: входной слой содержит три нейрона, первый скрытый слой — пять, следующие два скрытых слоя — четыре, а выходной слой — два. На примере этой сети видно и то, что выходной слой также может иметь несколько нейронов. Использование нескольких выходных нейронов полезно, если целью является номинальный или порядковый тип данных, имеющий разные уровни. В подобных сценариях сеть настраивают таким образом, чтобы для каждого уровня существовал один выходной нейрон, и обучают ее так, чтобы для каждого входа только один из выходных нейронов выводил высокую активацию (означающую прогнозируемый целевой уровень).

Подобно предыдущим сетям, которые мы рассматривали, это также полностью подключенная сеть с прямой связью. Однако не все сети являются таковыми. Было разработано множество типов сетевых топологий. Например, рекуррентные нейронные сети (РНС) вводят в сетевую топологию петли: выходное значение нейрона возвращается на один из входов в процессе обработки следующего набора входных значений. Этот цикл дает сети память, которая позволяет ей обрабатывать каждый вход в контексте предыдущих, уже обработанных ею раньше. Следовательно, РНС подходят для обработки последовательных данных, таких как естественный язык[20]. Другой популярной архитектурой глубоких нейронных сетей являются сверхточные нейронные сети (СНС). СНС были первоначально разработаны для использования с данными изображений{1}. Сеть распознавания изображений должна обнаруживать на изображении визуальный признак независимо от того, в какой части изображения он встречается. Например, если сеть выполняет распознавание лиц, она должна уметь распознавать форму глаза, где бы он ни находился — в верхнем правом углу или в центре изображения. СНС достигают этого за счет групп нейронов, которые имеют одинаковый набор весов на своих входах. В этом контексте набор входных весов определяет функцию, которая возвращает истинное значение, если в наборе поступающих в нее пикселей появляется определенный визуальный признак. Это означает, что каждая группа нейронов с одинаковыми весами учится идентифицировать определенный визуальный признак и каждый нейрон в группе действует как детектор этого признака. В СНС нейроны в каждой группе расположены так, чтобы каждый исследовал свой фрагмент изображения, а вместе группа охватывала бы его целиком. Таким образом, если заданный визуальный признак присутствует на изображении, один из нейронов в группе идентифицирует его.

Сила глубоких нейронных сетей в том, что они могут автоматически изучать полезные атрибуты, такие как детекторы признаков в СНС. Глубокое обучение иногда так и называют — «обучение признакам», поскольку глубокие сети по сути изучают новое представление входных данных, которое лучше подходит для прогнозирования целевого выходного атрибута, чем исходный необработанный ввод. Каждый нейрон в сети определяет функцию, которая отображает значения в новый входной атрибут. Поэтому нейрон в первом слое сети может изучать функцию, которая преобразует необработанные входные значения (например, вес и рост) в более полезный атрибут (например, ИМТ). Однако выход этого нейрона наравне с его сестринскими нейронами в первом слое подается в нейроны второго слоя, изучающие функции, которые преобразуют выходные данные первого слоя в новые и еще более полезные представления. Этот процесс сопоставления входных данных с новыми атрибутами и передачи этих новых атрибутов в качестве входных данных для следующих функций распространяется по сети, и по мере того, как сеть становится глубже, она может изучать все более и более сложные сопоставления. Именно способность автоматически изучать сложные сопоставления входных данных с полезными атрибутами делает модели глубокого обучения настолько точными при выполнении задач с многомерным вводом (таких, как обработка изображений и текста).

Давно известно, что чем глубже нейронная сеть, тем более сложные отображения данных она способна изучать. Однако развитие глубокое обучение получило лишь в последние несколько лет, и причина этого заключается в том, что стандартная комбинация случайного веса с последующим алгоритмом обратного распространения ошибки не очень хорошо работала с глубокими сетями. Во-первых, ошибка в этом случае распределяется по мере того, как процесс возвращается со слоя на слой, так что к тому времени, когда алгоритм достигает ранних слоев глубокой сети, оценки ошибок уже не так полезны[21]. В результате слои в ранних частях сети не учатся полезным преобразованиям данных. Однако в последние годы были разработаны новые типы нейронов и адаптации к алгоритму обратного распространения, которые помогают решить эту проблему. Также было обнаружено, что требуется осторожная инициализация весов сети. Два других фактора, которые усложняли обучение глубоких сетей, заключались в том, что для обучения нейронной сети требуется большая вычислительная мощность и к тому же нейронные сети показывают максимальную эффективность на большом количестве обучающих данных. В последние годы большие вычислительные мощности стали доступнее, и это сделало обучение глубоких сетей осуществимым.

Деревья решений

Линейная регрессия и нейронные сети лучше всего работают с числовыми входными данными. Если входные атрибуты в наборе данных в основном номинальные или порядковые, лучше использовать другие алгоритмы и модели машинного обучения, такие как деревья решений.

Дерево решений кодирует условный оператор если-то-иначе в древовидной структуре. Рис. 16 иллюстрирует дерево решений для проблемы, стоит ли смотреть фильм. Прямоугольники с закругленными углами представляют собой тесты атрибутов, а квадраты обозначают узлы решения, или классификации. Это дерево кодирует следующие правила: если фильм — комедия, то смотреть; если фильм не комедия, а триллер, то тоже смотреть; если он не комедия и не триллер, то не смотреть. Процесс решения для объекта в структуре дерева решений начинается с его вершины и спускается вниз, последовательно тестируя атрибуты объекта. Каждый узел дерева устанавливает один атрибут для тестирования, и процесс спускается вниз узел за узлом, выбирая следующую ветвь по метке, соответствующей значению теста атрибута. Финальное решение — это метка конечного (или листового) узла, к которому спускается объект.

Все пути в структуре дерева решений от корня до листа определяются правилом классификации, состоящим из последовательных тестов. Цель обучения дерева решений состоит в том, чтобы найти такие правила классификации, которые делят обучающий набор данных на группы объектов, имеющих одинаковое значение целевого атрибута. Идея состоит в том, что если правило классификации может отделить от набора данных подмножество объектов с одинаковым целевым значением и если оно истинно для нового объекта (т. е. такого, который идет по этому пути в дереве), то вероятно, что правильный прогноз для этого нового объекта — целевое значение, общее для всех обучающих объектов, соответствующих этому правилу.

Прародителем большинства современных алгоритмов машинного обучения деревьев решений является алгоритм ID3{3}. Он строит деревья решений рекурсивным способом в глубину, добавляя один узел зараз, начиная с корневого узла. ID3 начинается с выбора атрибута для проверки в корневом узле. Ветвь вырастает для каждого значения из области определения этого тестового атрибута и помечается этим значением. Узел с бинарным тестовым атрибутом будет иметь две ветви, исходящие от него. Затем набор данных разделяется: каждый объект из этого набора перемещается вниз по той ветви, метка которой соответствует значению тестового атрибута для объекта. Затем ID3 наращивает каждую ветвь, используя тот же процесс, что и для создания корневого узла: выбрать тестовый атрибут — добавить узел с ветвями — разделить данные, направив объекты по соответствующим ветвям. Этот процесс повторяется до тех пор, пока все объекты каждой ветви не будут иметь одинаковое значение целевого атрибута, тогда в дерево добавляется конечный узел и помечается значением целевого атрибута, общего для всех объектов ветви[22].

ID3 выбирает атрибут для тестирования в каждом узле дерева, чтобы минимизировать количество тестов, необходимых для создания очищенных наборов (т. е. таких групп объектов, которые имеют одинаковое значение целевого атрибута). Одним из способов измерения чистоты набора является использование информационной энтропии — меры неопределенности информации Клода Шеннона. Минимально возможная энтропия для множества равна нулю, поэтому очищенное множество имеет энтропию, равную нулю. Максимальное значение возможной энтропии для набора зависит от его размера и разнообразия представленных типов элементов. Набор будет иметь максимальную энтропию, когда все элементы в нем разного типа[23]. ID3 выбирает для тестирования в узле атрибут, который приводит к наименьшему значению взвешенной энтропии после разделения набора данных с использованием этого атрибута. Взвешенная энтропия для атрибута рассчитывается следующим путем: 1) разделение набора данных по атрибуту; 2) вычисление энтропии результирующих множеств; 3) взвешивание каждой энтропии по ее доле в наборе данных; 4) суммирование результатов.

В табл. 3 приведен список электронных писем, в котором каждое описывается рядом атрибутов и тем, является оно спамом или нет. Атрибут «Вложение» имеет значение «Истина» для электронных писем, содержащих вложение, и значение «Ложь» в ином случае (в этой выборке ни одно из электронных писем не имело вложений). Атрибут «Подозрительные слова» имеет значение «Истина», если электронное письмо содержит одно или несколько слов в предварительно определенном списке подозрительных слов. Атрибут «Неизвестный отправитель» истинен, если отправитель электронного письма отсутствует в адресной книге получателя. Этот набор данных использовался для обучения дерева решений на рис. 16. В нем атрибуты «Вложение», «Подозрительные слова» и «Неизвестный отправитель» были входными атрибутами, а атрибут «Спам» — целью. Атрибут «Неизвестный отправитель» разбивает набор данных на более чистые группы, чем другие атрибуты (одна из них содержит большинство объектов, где Спам = Истина, а другая, где Спам = Ложь). Затем «Неизвестный отправитель» помещается в корневой узел, как на рис. 17. После этого начального разделения все объекты в правой ветви имеют одинаковое целевое значение, а объекты в левой — разное. Разделение объектов в левой ветви с использованием атрибута «Подозрительные слова» приводит к образованию двух чистых наборов, где также для одного Спам = Ложь, для другого Спам = Истина. Таким образом, «Подозрительные слова» выбраны в качестве тестового атрибута для нового узла в левой ветви, как на рис. 18. На этом этапе подмножества данных в конце каждой ветви являются чистыми, поэтому алгоритм завершает работу и возвращает дерево решений, показанное на рис. 16.

Одно из преимуществ деревьев решений заключается в том, что они понятны, притом с их помощью можно создавать очень точные модели. Например, модель «случайного леса» состоит из набора деревьев решений, где каждое дерево обучается случайной подвыборке обучающих данных, а прогноз, возвращаемый моделью для отдельного запроса, является прогнозом большинства деревьев в лесу. Хотя деревья решений хорошо работают с номинальными и порядковыми данными, они испытывают трудности с числовыми данными. В дереве решений существуют отдельные ветви, исходящие из каждого узла к каждому значению в области определения атрибута, проверяемого на узле. Числовые атрибуты, однако, могут иметь неограниченное число значений в своих областях определений, а это означает, что дереву потребуется бесконечное число ветвей. Одним из решений этой проблемы является преобразование числовых атрибутов в порядковые атрибуты, хотя для этого нужно определить соответствующие пороговые значения, что также может быть непросто.