Далее, я должен отметить «Лекции о приближенных вычислениях», вышедшие первым изданием в 1911 г. и вторым, в пополненном виде, – в 1932 г. говоря словами Алексея Николаевича, курс «имеет целью показать действительно применимые практические приемы и способы вычисления…». «Главная задача была о том, чтобы показать, как и когда тем или иным приемом пользоваться». курс охватывает все важнейшие задачи этого рода: вычисление корней численных уравнений, определенных интегралов, пользование тригонометрическими рядами и приближенное решение дифференциальных уравнений. Редко встречается курс, где бы с такой ясностью и полнотой излагались как основные правила, так и примеры их применений; всякое вычисление доводится до конца, с указанием всех необходимых промежуточных этапов, вследствие чего изучивший книгу Крылова может вполне овладеть изложенными в ней приемами.
Наконец, остановлю ваше внимание на замечательной книге: «О некоторых дифференциальных уравнениях математической физики, имеющих приложение в технических вопросах», впервые вышедшей в 1913 г., а затем вторым пополненным изданием – в 1932 г. и третьим – в текущем году.
Я не знаю руководства, лучше освещающего разнообразнейшие приемы интегрирования уравнений, практически применяемые в этой основной задаче; изложение в высшей степени простое, ясное и полное, с указанием подробного хода вычислений, иллюстрировано самыми разнообразными примерами, как заимствованными из работ других ученых, так и взятыми из статей самого Крылова. Особое внимание обращает на себя глава VI (последнего издания книги), трактующая о ряде Фурье.
Здесь автор дал оригинальный прием усиления быстроты сходимости указанных рядов, позволяющий в чрезвычайной степени сократить вычисления при подсчете числового значения выражаемых рядами функций; сверх того, тот же прием дает способ находить производные от функции, выраженной таким тригонометрическим рядом, почленное дифференцирование которого невозможно.
На этом я заканчиваю обзор оригинальных трудов А. Н. Крылова, оставляя в стороне еще многие его менее значительные работы по самым различным вопросам. Эти работы отнюдь не потеряли своей ценности; во многих из них Крылов проявил ту же проницательность, необычайный дар выделения существенных влияний, управляющих ходом явления, чрезвычайное мастерство в вычислительном процессе; рассматривая любой вопрос, Алексей Николаевич считает его разрешенным лишь тогда, когда показан способ довести дело до получения числа.
Я не отметил еще одной стороны творчества А. Н. Крылова – он является изобретателем ряда ценных приборов, главным образом связанных с его специальностью – теорией корабля; в числе их имеется и особый интегратор оригинальной системы.
В заключение упомяну еще об очень важном труде А. Н. Крылова – его переводе «Математических начал натуральной философии» Ньютона. С чрезвычайной тщательностью и любовью он исполнил эту работу, и мы получили величайшее произведение человеческого гения в образцовом переводе прекрасным русским языком с великолепными чертежами.
Трудные места текста Алексей Николаевич снабдил пояснительными примечаниями, а в конце первой книги добавил большую заметку, дающую простой вывод аналитических уравнений возмущенного движения, вытекающий, как показал Алексей Николаевич, из геометрических соображений великого творца «Начал».
Характеристику научной работы А. Н. Крылова необходимо пополнить еще хотя бы кратким упоминанием о других сторонах его деятельности.
Он много времени отдал Морской академии, где на нем лежало научное руководство слушателями по математическим дисциплинам; одно время он был начальником академии, а дополнительные лекции по математике читает и по настоящее время.
С 1916 г. Крылов – действительный член Академии наук. Здесь он работает долгое время в качестве директора Физико-механического института и возглавляет Физико-математическую группу Отделения математических и естественных наук.
Наконец, за последнее время Алексей Николаевич руководит деятельностью всесоюзного инженерно-технического общества судостроения, где с июня 1932 г. состоит председателем.
Необходимо отметить также, что свои научные достижения Алексею Николаевичу постоянно приходилось применять и в практической работе: он неоднократно командировался за границу как для приемки заказанных там судов, так и для наблюдения за проектированием их, если были какие-нибудь условия, вызывавшие необходимость в указаниях высококвалифицированного консультанта.
Я лично давно уже знаю Алексея Николаевича. Более 30 лет тому назад я имел удовольствие встречаться с ним у незабвенного учителя моего покойного Н. Е. Жуковского. Алексей Николаевич сразу обращал на себя внимание своей широкой эрудицией, своим живым умом и проницательностью в научных вопросах. Каким он был тогда, таким остался и поныне: переступив свое 70-летие, он так же бодр, его научный кругозор стал, конечно, еще шире, все так же свеж его творческий талант и так же блестящи его остроумие и проницательность. Это дает мне право выразить твердую уверенность, что Алексей Николаевич еще многое добавит к тем научным завоеваниям, которые он сделал до сих пор.
Ε. А. Капица
Запечатленное в памяти (вспоминает А. А. Капица, урожденная Крылова)
«Мы – Русские, это великое слово – Россия.
И мы России все, все, всегда должны отдать».
Это была совершенно необыкновенная женщина – дочь нашего крупнейшего математика и корабела Алексея Николаевича Крылова и жена выдающегося физика Петра Леонидовича Капицы. Быть женой, другом, опорой Петра Леонидовича – это было, пожалуй, важнейшим в жизни Анны Алексеевны. Ее жизнь была неотделима от жизни мужа, но при этом обладала она самобытной, ни на кого не похожей натурой. Это был высокообразованный человек со своими острыми суждениями, со своими абсолютно непоколебимыми убеждениями и принципами.
Родилась Анна Алексеевна в 1903 году, и перед глазами у нее прошел почти весь двадцатый век. До последних дней, а скончалась она в возрасте 93 лет, сохранила Анна Алексеевна живейший интерес к происходящему, темпераментно переживая наши политические и бытовые коллизии. «Жизнь человека длится, пока ему интересно», – любила она повторять.